File size: 2,490 Bytes
3f6c2a7 cd6d890 3f6c2a7 cd6d890 3f6c2a7 384e68d cd6d890 3f6c2a7 6632a1b 3f6c2a7 3adf7f1 3f6c2a7 cd6d890 6632a1b cd6d890 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
import os
app = FastAPI()
# Set the cache directory for Hugging Face
os.environ['TRANSFORMERS_CACHE'] = os.getenv('TRANSFORMERS_CACHE', '/app/cache')
# Load model and tokenizer
model_name = "Bijoy09/MObilebert"
try:
model = AutoModelForSequenceClassification.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
except Exception as e:
raise RuntimeError(f"Failed to load model or tokenizer: {e}")
class TextRequest(BaseModel):
text: str
class BatchTextRequest(BaseModel):
texts: list[str]
@app.post("/predict/")
@app.post("/predict")
async def predict(request: TextRequest):
try:
model.eval()
inputs = tokenizer.encode_plus(
request.text,
add_special_tokens=True,
max_length=64,
truncation=True,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
prediction = torch.argmax(logits, dim=1).item()
return {"prediction": "Spam" if prediction == 1 else "Ham"}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Prediction failed: {e}")
@app.post("/batch_predict/")
@app.post("/batch_predict")
async def batch_predict(request: BatchTextRequest):
try:
model.eval()
results = []
for text in request.texts:
inputs = tokenizer.encode_plus(
text,
add_special_tokens=True,
max_length=64,
truncation=True,
padding='max_length',
return_attention_mask=True,
return_tensors='pt'
)
with torch.no_grad():
logits = model(inputs['input_ids'], attention_mask=inputs['attention_mask']).logits
prediction = torch.argmax(logits, dim=1).item()
results.append({"text": text, "prediction": "Spam" if prediction == 1 else "Ham"})
return {"results": results}
except Exception as e:
raise HTTPException(status_code=500, detail=f"Batch prediction failed: {e}")
@app.get("/")
async def root():
return {"message": "Welcome to the MobileBERT API"}
|