Spaces:
Configuration error
Configuration error
# For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 | |
# Doc / guide: https://huggingface.co/docs/hub/model-cards | |
license: apache-2.0 | |
language: | |
- zh | |
widget: | |
- text: >- | |
A chat between a curious user and an artificial intelligence assistant. | |
The assistant gives helpful, detailed, and polite answers to the user's | |
questions. USER: 你好,請問你可以幫我寫一封推薦信嗎? ASSISTANT: | |
library_name: transformers | |
pipeline_tag: text-generation | |
extra_gated_heading: Acknowledge license to accept the repository. | |
extra_gated_prompt: Please contact the author for access. | |
extra_gated_button_content: Acknowledge license 同意以上內容 | |
extra_gated_fields: | |
Name: text | |
Mail: text | |
Organization: text | |
Country: text | |
Any utilization of the Taiwan LLM repository mandates the explicit acknowledgment and attribution to the original author: checkbox | |
使用Taiwan LLM必須明確地承認和歸功於優必達株式會社 Ubitus 以及原始作者: checkbox | |
<img src="https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/CmusIT5OlSXvFrbTJ7l-C.png" alt="Taiwan LLM Logo" width="800" style="margin-left:'auto' margin-right:'auto' display:'block'"/> | |
# 🌟 Checkout [Taiwan-LLM Demo Chat-UI](http://www.twllm.com) 🌟 | |
# Model Card for Taiwan LLM 7B v2.1 chat | |
Taiwan LLM is an advanced language model tailored for Traditional Chinese, focusing on the linguistic and cultural contexts of Taiwan. | |
Developed from a large base model, it's enriched with diverse Taiwanese textual sources and refined through Supervised Fine-Tuning. | |
This model excels in language understanding and generation, aligning closely with Taiwan's cultural nuances. | |
It demonstrates improved performance on various benchmarks like TC-Eval, showcasing its contextual comprehension and cultural relevance. | |
For detailed insights into Taiwan LLM's development and features, refer to our [technical report](https://github.com/MiuLab/Taiwan-LLaMa/blob/main/twllm_paper.pdf). | |
## Model description | |
- **Model type:** A 7B parameter GPT-like model fine-tuned on a mix of publicly available, synthetic datasets. | |
- **Language(s) (NLP):** Primarily Traditional Chinese (zh-tw) | |
- **Finetuned from model:** [yentinglin/Taiwan-LLM-7B-v2.0-base](https://huggingface.co/yentinglin/yentinglin/Taiwan-LLM-7B-v2.0-base) | |
### Model Sources | |
<!-- Provide the basic links for the model. --> | |
- **Repository:** https://github.com/MiuLab/Taiwan-LLaMa | |
- **Demo:** https://twllm.com/ | |
## Performance | |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/HTwIzw6RDha2-PhuWqSuI.png) | |
## Intended uses | |
Here's how you can run the model using the `pipeline()` function from 🤗 Transformers: | |
```python | |
# pip install transformers>=4.34 | |
# pip install accelerate | |
import torch | |
from transformers import pipeline | |
pipe = pipeline("text-generation", model="yentinglin/Taiwan-LLM-7B-v2.1-chat", torch_dtype=torch.bfloat16, device_map="auto") | |
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating | |
messages = [ | |
{ | |
"role": "system", | |
"content": "你是一個人工智慧助理", | |
}, | |
{"role": "user", "content": "東北季風如何影響台灣氣候?"}, | |
] | |
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) | |
print(outputs[0]["generated_text"]) | |
``` | |
### Training hyperparameters | |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/MdvHwdUvH-c926qyRAw7K.png) | |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/kKpkvxDzOEyiAoTqmzRYO.png) | |
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5df9c78eda6d0311fd3d541f/FsnlJ_fkRxf7fn5RKZnjE.png) | |
The following hyperparameters were used during training: | |
- learning_rate: 5e-05 | |
- distributed_type: multi-GPU | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: cosine | |
- lr_scheduler_warmup_ratio: 0.03 | |
- num_epochs: 5.0 | |
## Citation | |
If you find Taiwan LLM is useful in your work, please cite it with: | |
``` | |
@misc{lin2023taiwan, | |
title={Taiwan LLM: Bridging the Linguistic Divide with a Culturally Aligned Language Model}, | |
author={Yen-Ting Lin and Yun-Nung Chen}, | |
year={2023}, | |
eprint={2311.17487}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
``` | |
# Acknowledgement | |
Taiwan LLM v2 is conducted in collaboration with [Ubitus K.K.](http://ubitus.net). Ubitus provides valuable compute resources for the project. | |