Spaces:
Sleeping
Sleeping
File size: 6,124 Bytes
f234576 37a6f17 f8f9857 8c44a86 f8f9857 502727a 8a4eb60 502727a 3b46104 2ddacc1 f8f9857 db111cc 3b46104 f8f9857 2ddacc1 b33166a 48b4e30 f79086f cee0fe2 4c739f1 418e22b 6cda4f2 48b4e30 8deb142 5271c72 8deb142 0edb841 d2652c3 b33166a 401ed7b 7960b44 f46a04e e0f5396 2dc9b40 0f8e818 b81c4dd b33166a 8d75482 48b4e30 c5c5495 b33166a 6cda4f2 b33166a 6cda4f2 b33166a 6cda4f2 b33166a 3bb24fe 8a4eb60 befbf2f f8f9857 9ba5511 b33166a f8f9857 d2a0386 e0f5396 3b46104 d2a0386 2dc9b40 8deb142 b33166a f8f9857 b33166a d709f43 568fb1d 88cc46f 9c66f38 88cc46f 9c66f38 88cc46f 568fb1d c53e6cf 06ab30b 9c66f38 88cc46f b33166a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import os
os.system('pip install llama-cpp-python transformers torch')
import gradio as gr
from llama_cpp import Llama
from transformers import AutoTokenizer
from huggingface_hub import upload_file
model_id = "Elijahbodden/eliGPTv1.3"
# MODEL
model = Llama.from_pretrained(
repo_id=model_id,
filename="model.gguf",
verbose=True,
n_threads = 2,
n_threads_batch = 2,
n_ctx=8192,
)
# TOKENIZER AND TEMPLATE
tokenizer = AutoTokenizer.from_pretrained(model_id)
presets = {
# Gaslight the model by adding sentence fragments to the start
# It's weird but it works
# If you're curious, default makes sure it doesn't hallucinate by showing that the next message is the start of a new convo
# I also include "oh" and "shit" bc the model overuses them and this lets repetition penalties do their thing
"Default" : [{"from": "human", "value": "shit good convo, bye"}, {"from": "gpt", "value": "Haha oh ok cool ttyl"}],
# I swear this is for science πΏ
"Rizz ????" : [{"from": "human", "value": "omg it's so hot when you flirt with me"}, {"from": "gpt", "value": "haha well you're lucky can even string a sentence together, the way you take my breath away π"}, {"from": "human", "value": "alright love you, gn!"}, {"from": "gpt", "value": "ttyl babe π"}],
"Thinky" : [{"from": "human", "value": "Woah you just totally blew my mind\ngehh now the fermi paradox is going to be bugging me 24/7\nok ttyl"}, {"from": "gpt", "value": "nah our deep convos are always the best, we should talk again soon\nttyl"}],
}
def custom_lp_logits_processor(ids, logits, lp_start, lp_decay, prompt_tok_len):
generated_tok_number = len(ids) - prompt_tok_len
if (generated_tok_number > lp_start):
print(len(ids), lp_start, pow(lp_decay, len(ids)-lp_start))
logits[tokenizer.eos_token_id] *= pow(lp_decay, generated_tok_number-lp_start)
return logits
def respond(
message,
history: list[tuple[str, str]],
preset,
min_p,
temperature,
lp_start,
lp_decay,
frequency_penalty,
presence_penalty,
max_tokens
):
print(preset, temperature, min_p, lp_start, lp_decay, frequency_penalty, presence_penalty, max_tokens)
messages = presets[preset].copy()
for val in history:
if val[0]:
messages.append({"from": "human", "value": val[0]})
if val[1]:
messages.append({"from": "gpt", "value": val[1]})
messages.append({"from": "human", "value": message})
response = ""
print(tokenizer.apply_chat_template(messages, tokenize=False))
convo = tokenizer.apply_chat_template(messages, tokenize=True)
for message in model.create_completion(
convo,
temperature=temperature,
stream=True,
stop=["<|im_end|>"],
min_p=min_p,
max_tokens=max_tokens,
# Disable top-k pruning
top_k=100000000,
frequency_penalty=frequency_penalty,
presence_penalty=presence_penalty,
logits_processor=lambda ids, logits: custom_lp_logits_processor(ids, logits, lp_start, lp_decay, len(convo))
):
token = message["choices"][0]["text"]
response += token
yield response
print(response)
ci = gr.ChatInterface(
respond,
additional_inputs_accordion=gr.Accordion(label="Options", open=True),
additional_inputs=[
gr.Radio(presets.keys(), label="Personality preset", info="Slightly influence the model's personality with the power of gaslighting TM", value="Default"),
# presets uncache the prompt and prompt processing is a big part of the generation time. Do not switch preset in the middle of a long convo if you want a response this millenium
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Min_p", info="Lower values give it more \"personality\""),
gr.Slider(minimum=0.1, maximum=4.0, value=1.5, step=0.1, label="Temperature", info="Higher values are less coherent and more random"),
gr.Slider(minimum=0, maximum=512, value=10, step=1, label="Length penalty start", info='Lower values make the model give shorter messages'),
gr.Slider(minimum=0.5, maximum=1.5, value=1.015, step=0.001, label="Length penalty decay factor", info='Higher values give less variance in max message length'),
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Frequency penalty", info='Increase if the model repeats itself too much'),
gr.Slider(minimum=0.0, maximum=1.0, value=0.1, step=0.01, label="Presence penalty", info='Increase to make the model more creative with what words it uses'),
gr.Slider(minimum=1, maximum=1024, value=1024, step=1, label="Max new tokens", info="Cut off the model if its response is longer than this"),
],
)
with gr.Blocks(css=".bubble-gap {gap: 6px !important}", theme="shivi/calm_seafoam") as demo:
gr.Markdown("# EliGPT v1.3")
gr.Markdown("Llama 3 8b finetuned on 2.5k of my discord messages. [Train your own clone!](https://gist.github.com/Elijah-Bodden/1964bd02fcd19efef65f6e0cd92881c4)\n(The model can be slow when multiple people are using it. Duplicate the space to get your own free faster instance. It can also be slow to start up if it hasn't been run in a while.)")
# with gr.Accordion("Q&A:", open=False):
# gr.Markdown("""Q: Why is the model so fucking slow
# A: The model might be slow if it hasn't run recently or a lot of people are using it (it's running on llama.cpp on a single a very slow cpu). You can duplicate the space to get your own (free) instance with no wait times.
# Q: Why is the model so dumb
# A: Llama 3 8b is impressive, but it's still tiny. This model is basically what you'd get if you shoved my brain into a toddler's head - it's just too small to be smart
# Q: Either it just made something up or I don't know you at all
# A: Probably the former. It's prone to hallucinating facts and opinions I don't hold. Take everything it says with a big grain of salt
# """)
ci.render()
if __name__ == "__main__":
demo.launch() |