File size: 31,387 Bytes
0d0f07a 14c3a4f 51778ca 7b3478d dcc32dc c7d9cf9 554cc8f c7d9cf9 0d0f07a e0ac5a8 0d0f07a aa5c198 ee625fc aa5c198 cdb0a70 94e7f68 e99824c aa5c198 cdb0a70 e99824c aa5c198 dde99f4 703ce10 edd0cd0 703ce10 76ee033 703ce10 76ee033 703ce10 dde99f4 703ce10 edd0cd0 c79bcd9 dde99f4 9ee85ae 76ee033 01b39fb be22c70 dde99f4 edd0cd0 0d0f07a c7d9cf9 dde99f4 2605d63 dde99f4 0d0f07a dde99f4 0d0f07a dde99f4 593c285 2ba8555 593c285 dde99f4 910ea33 dde99f4 910ea33 dde99f4 6640785 dde99f4 6640785 dde99f4 b24ad56 dde99f4 910ea33 dde99f4 14c3a4f ee625fc dde99f4 1eab639 dde99f4 bdf0a5e dde99f4 593c285 2ba8555 593c285 dde99f4 ee625fc dde99f4 76ee033 dde99f4 c79bcd9 2ba8555 593c285 c79bcd9 dde99f4 ee625fc dde99f4 ee625fc dde99f4 7b3478d dde99f4 0d0f07a dde99f4 7b3478d dde99f4 7b3478d dde99f4 2ba8555 a1d0fa4 dde99f4 554cc8f dde99f4 46e623d dde99f4 46e623d dde99f4 3d7efd9 dde99f4 3d7efd9 dde99f4 3d7efd9 dde99f4 8e13e1c dde99f4 703ce10 22f86a8 46317e3 22f86a8 46317e3 22f86a8 46317e3 590f96a 01b39fb 46317e3 01b39fb 46317e3 01b39fb 46317e3 01b39fb 00a8bfc 3934427 01b39fb 46317e3 01b39fb 3934427 01b39fb 8a850b7 2c2fce4 8a850b7 2c2fce4 8a850b7 22f86a8 926ac94 46e623d c7d9cf9 0d0f07a dde99f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 |
import streamlit as st
from streamlit_option_menu import option_menu
from word2vec import *
import pandas as pd
from autocomplete import *
from plots import *
from lsj_dict import *
import json
from streamlit_tags import st_tags, st_tags_sidebar
st.set_page_config(page_title="ἄγαλμα | AGALMA", layout="centered", page_icon="images/AGALMA_logo.png")
# Cache data
@st.cache_data
def load_lsj_dict():
return json.load(open('lsj_dict.json', 'r'))
@st.cache_data
def load_all_models_words():
return sorted(load_compressed_word_list('corpora/compass_filtered.pkl.gz'), key=custom_sort)
@st.cache_data
def load_models_for_word_dict():
return word_in_models_dict('corpora/compass_filtered.pkl.gz')
@st.cache_data
def load_all_lemmas():
return load_compressed_word_list('all_lemmas.pkl.gz')
@st.cache_data
def load_lemma_count_dict():
return count_lemmas('lemma_list_raw')
# Load compressed word list
all_models_words = load_all_models_words()
# Prepare lsj dictionary
lemma_dict = load_lsj_dict()
# Load dictionary with words as keys and eligible models as values
models_for_word_dict = load_models_for_word_dict()
lemma_counts = load_lemma_count_dict()
# Set styles for menu
styles_horizontal = {
"container": {"display": "flex", "justify-content": "center"},
"nav": {"display": "flex", "gap": "2px", "margin": "5px"},
"nav-item": {"flex": "1", "font-family": "Helvetica"},
"nav-link": {
"background-color": "#f0f0f0",
"border": "1px solid #ccc",
"border-radius": "5px",
"padding": "10px",
"width": "150px",
"height": "60px",
"display": "flex",
"align-items": "center",
"justify-content": "center",
"transition": "background-color 0.3s, color 0.3s",
"color": "black",
"text-decoration": "none"
},
"nav-link:hover": {
"background-color": "rgb(238, 238, 238)",
"color": "#000"
},
"nav-link-selected": {
"background-color": "#B8E52B",
"color": "white",
"font-weight": "bold"
},
"icon": {"display": "None"}
}
styles_vertical = {
"nav-link-selected": {
"background-color": "#B8E52B",
"color": "white",
"font-weight": "bold"
}
}
# Set vertical sidebar width to 350px
st.markdown(
"""
<style>
section[data-testid="stSidebar"] {
width: 350px !important; # Set the width to your desired value
}
</style>
""",
unsafe_allow_html=True,
)
with st.sidebar:
st.image('images/AGALMA_logo_v2.png')
# st.markdown('# ἄγαλμα | AGALMA')
selected = option_menu('ἄγαλμα | AGALMA', ["App", "About", "FAQ", "Subcorpora", "License"],
menu_icon="menu", default_index=0, orientation="vertical", styles=styles_vertical, icons=['house', 'file-person', 'question-square', 'book', 'file-earmark'])
if selected == "App":
# Horizontal menu
active_tab = option_menu(None, ["Nearest neighbours", "Cosine similarity", "3D graph", 'Dictionary'],
menu_icon="cast", default_index=0, orientation="horizontal", styles=styles_horizontal)
# Adding CSS style to remove list-style-type
st.markdown("""
<style>
/* Define a class to remove list-style-type */
.no-list-style {
list-style-type: none;
}
</style>
""", unsafe_allow_html=True)
# Nearest neighbours tab
if active_tab == "Nearest neighbours":
# All models in a list
eligible_models = ["Archaic", "Classical", "Hellenistic", "Early Roman", "Late Roman"]
all_models_words = load_all_models_words()
with st.container():
st.markdown("## Nearest Neighbours")
st.markdown(
'Here you can extract the nearest neighbours to a chosen lemma. \
Please select one or more time slices and the preferred number of nearest neighbours. \
**Only type in Greek, with correct spirits and accents**.'
)
target_word = st.multiselect("Enter a word", options=all_models_words, max_selections=1)
if len(target_word) > 0:
target_word = target_word[0]
eligible_models = models_for_word_dict[target_word]
models = st.multiselect(
"Select models to search for neighbours",
eligible_models
)
n = st.slider("Number of neighbours", 1, 50, 15)
nearest_neighbours_button = st.button("Find nearest neighbours")
if nearest_neighbours_button:
if validate_nearest_neighbours(target_word, n, models) == False:
st.error('Please fill in all fields')
else:
# Rewrite models to list of all loaded models
models = load_selected_models(models)
nearest_neighbours = get_nearest_neighbours(target_word, n, models)
all_dfs = []
# Create dataframes
for model in nearest_neighbours.keys():
st.write(f"### {model}")
df = pd.DataFrame(
nearest_neighbours[model],
columns = ['Word', 'Cosine Similarity']
)
# Add word occurences to dataframe
df['Occurences'] = df['Word'].apply(lambda x: lemma_counts[model][x])
all_dfs.append((model, df))
st.table(df)
# Store content in a temporary file
tmp_file = store_df_in_temp_file(all_dfs)
# Open the temporary file and read its content
with open(tmp_file, "rb") as file:
file_byte = file.read()
# Create download button
st.download_button(
"Download results",
data=file_byte,
file_name = f'nearest_neighbours_{target_word}.xlsx',
mime='application/octet-stream'
)
# Cosine similarity tab
elif active_tab == "Cosine similarity":
all_models_words = load_all_models_words()
with st.container():
eligible_models_1 = []
eligible_models_2 = []
st.markdown("## Cosine similarity")
st.markdown(
'Here you can extract the cosine similarity between two lemmas. \
Please select a time slice for each lemma. \
You can also calculate the cosine similarity between two vectors of the same lemma in different time slices. \
**Only type in Greek, with correct spirits and accents**. '
)
col1, col2 = st.columns(2)
col3, col4 = st.columns(2)
with col1:
word_1 = st.multiselect("Enter a word", placeholder="πατήρ", max_selections=1, options=all_models_words)
if len(word_1) > 0:
word_1 = word_1[0]
eligible_models_1 = models_for_word_dict[word_1]
with col2:
time_slice_1 = st.selectbox("Time slice word 1", options = eligible_models_1)
with st.container():
with col3:
word_2 = st.multiselect("Enter a word", placeholder="μήτηρ", max_selections=1, options=all_models_words)
if len(word_2) > 0:
word_2 = word_2[0]
eligible_models_2 = models_for_word_dict[word_2]
with col4:
time_slice_2 = st.selectbox("Time slice word 2", eligible_models_2)
# Create button for calculating cosine similarity
cosine_similarity_button = st.button("Calculate cosine similarity")
# If the button is clicked, execute calculation
if cosine_similarity_button:
cosine_simularity_score = get_cosine_similarity(word_1, time_slice_1, word_2, time_slice_2)
st.markdown('''<span style="font-size: 24px"> The Cosine Similarity between %s (%s) and %s (%s) is: **%s**</span>''' % (word_1, time_slice_1, word_2, time_slice_2, cosine_simularity_score), unsafe_allow_html=True)
# 3D graph tab
elif active_tab == "3D graph":
st.markdown("## 3D graph")
st.markdown('''
Here you can generate a 3D representation of the semantic space surrounding a target lemma. Please choose the lemma and the time slice.\
**Only type in Greek, with correct spirits and accents**. \
**NB**: the 3D representations are reductions of the multi-dimensional representations created by the models. \
This is necessary for visualization, but while reducing the dimnesions some informations gets lost. \
The 3D representations are thus not 100% accurate. For more information, please consult the FAQ.
''')
col1, col2 = st.columns(2)
# Load compressed word list
all_models_words = load_all_models_words()
with st.container():
eligible_models = []
with col1:
word = st.multiselect("Enter a word", all_models_words, max_selections=1)
if len(word) > 0:
word = word[0]
eligible_models = models_for_word_dict[word]
with col2:
time_slice = st.selectbox("Time slice", eligible_models)
n = st.slider("Number of words", 1, 50, 15)
graph_button = st.button("Create 3D graph")
if graph_button:
time_slice_model = convert_time_name_to_model(time_slice)
nearest_neighbours_vectors = get_nearest_neighbours_vectors(word, time_slice_model, n)
fig, df = make_3d_plot_tSNE(nearest_neighbours_vectors, word, time_slice_model)
st.plotly_chart(fig)
# Dictionary tab
elif active_tab == "Dictionary":
with st.container():
st.markdown('## Dictionary')
st.markdown('Search a word in the Liddell-Scott-Jones dictionary. **Only type in Greek, with correct spirits and accents**. ')
all_lemmas = load_all_lemmas()
# query_word = st.multiselect("Search a word in the LSJ dictionary", all_lemmas, max_selections=1)
query_tag = st_tags(label='',
text = '',
value = [],
suggestions = all_lemmas,
maxtags = 1,
key = '1'
)
# If a word has been selected by user
if query_tag:
# Display word information
if query_tag[0] in lemma_dict:
st.write(f"### {query_tag[0]}")
data = lemma_dict[query_tag[0]]
elif query_tag[0].capitalize() in lemma_dict: # Some words are capitalized in the dictionary
st.write(f"### {query_tag[0].capitalize()}")
data = lemma_dict[query_tag[0].capitalize()]
else:
st.error("Word not found in dictionary")
exit(-1)
# Put text in readable format
text = format_text(data)
st.markdown(format_text(data), unsafe_allow_html = True)
st.markdown("""
<style>
.tab {
display: inline-block;
margin-left: 4em;
}
.tr {
font-weight: bold;
}
.list-class {
list-style-type: none;
margin-top: 1em;
}
.primary-indicator {
font-weight: bold;
font-size: x-large;
}
.secondary-indicator {
font-weight: bold;
font-size: large;
}
.tertiary-indicator {
font-weight: bold;
font-size: medium;
}
.quaternary-indicator {
font-weight: bold;
font-size: medium;
}
.primary-class {
padding-left: 2em;
}
.secondary-class {
padding-left: 4em;
}
.tertiary-class {
padding-left: 6em;
}
.quaternary-class {
padding-left: 8em;
}
</style>
""", unsafe_allow_html=True)
if selected == "About":
st.markdown("""
## About
Welcome to AGALMA | ἄγαλμα, the Ancient Greek Accessible Language Models for linguistic Analysis!
This interface was developed in the framework of Silvia Stopponi’s PhD project, \
supervised by Saskia Peels-Matthey and Malvina Nissim at the University of Groningen (The Netherlands). \
The aim of this tool is to make language models trained on Ancient Greek available to all interested people, respectless of their coding skills. \
The following people were involved in the creation of this interface:
**Mark den Ouden** developed the interface.
**Silvia Stopponi** trained the models, defined the structure of the interface, and wrote the textual content.
**Saskia Peels-Matthey** supervised the project and revised the structure of the interface and the textual content.
**Malvina Nissim** supervised the project.
**Anchoring Innovation** financially supported the creation of this interface. \
Anchoring Innovation is the Gravitation Grant research agenda of the Dutch National Research School in Classical Studies, OIKOS. \
It is financially supported by the Dutch ministry of Education, Culture and Science (NWO project number 024.003.012).
<div style="text-align: center; font-weight: bold;">How to cite</div>
If you use this interface for your research, please cite it as:
Stopponi, Silvia, Mark den Ouden, Saskia Peels-Matthey & Malvina Nissim. 2024. \
<span style="font-style: italic;">AGALMA: Ancient Greek Accessible Language Models for linguistic Analysis.</span>
""", unsafe_allow_html=True)
if selected == "FAQ":
st.markdown("""
## FAQ
""")
with st.expander(r"$\textsf{\Large What is this interface based on?}$"):
st.write(
"This interface is based on language models. Language models are probability distributions of \
words or word sequences, which store statistical information about word co-occurrences. \
This happens during the training phase, in which models process a corpus of texts in the \
target language(s). Once trained, linguistic information can be extracted from the models, or \
the models can be used to perform specific linguistic tasks. In this interface, we focus on the \
extraction of semantic information. To that end, we created five models, corresponding to five \
time slices. The models on which this interface is based are so-called Word Embedding \
models (the specific architecture is called Word2Vec)."
)
with st.expander(r"$\textsf{\Large What are Word Embeddings?}$"):
st.write(
"Word Embeddings are representations of words obtained via language modelling. More in \
detail, they are strings of numbers (called *vectors*) produced by a language model to \
represent each word in the training corpus in a multi-dimensional space. Words that are more \
similar in meaning will be closer to one another in this vector space (or semantic space) than \
words that are less similar in meaning. The term *word embeddings* is often used as a \
synonym of *predict models*, a type of language models introduced by Mikolov *et al.* (2013) \
with the Word2Vec architecture. This interface is built upon Word2Vec models."
)
with st.expander(r"$\textsf{\Large Which corpus was used to train the models?}$"):
st.markdown('''
The five models on which this interface is based were trained on five diachronic slices of the \
Diorisis Ancient Greek Corpus, which is ‘a digital collection of ancient Greek texts (from \
Homer to the early fifth century AD) compiled for linguistic analyses’ (Vatri & McGillivray \
2018: 55). The Diorisis corpus contains a subset of the texts that can be found in the \
Thesaurus Linguae Graecae. More information about the works and authors included in each \
subcorpus is provided in the 'Subcorpora' tab in the menu on the left.'''
, unsafe_allow_html=True)
with st.expander(r"$\textsf{\Large How was the corpus divided into time slices?}$"):
st.write(
"The texts in the corpus were divided according to chronology. We tried to strike a balance \
between respecting the traditional divisions of Ancient Greek literature into periods and \
having slices of a more or less comparable size. The division is the following: \
\
Archaic: beginning-500 BCE; Classical: 499-324 BCE; Hellenistic: 323-0 BCE, Early Roman: \
1-250 CE; Late Roman: 251-500 CE."
)
with st.expander(r"$\textsf{\small Which are the theoretical assumptions behind distributional semantic models, such as Word Embeddings?}$"):
st.write(
"Computational semantics is based on the Distributional Hypothesis. According to this \
hypothesis, words used in similar lexical contexts (contexts of words surrounding them) will \
have a similar meaning. This hypothesis was famously summarized by J.R. Firth as ‘you \
shall know a word by the company it keeps’ (1957: xx). Phrased differently, this \
means that two words that occur in similar lexical contexts are probably semantically \
related. The words that occur in the most similar lexical contexts are referred to as \
nearest neighbours. This does not necessarily mean, though, that these words even \
occur together. A detailed introduction to distributional semantics can be found in the book \
*Distributional Semantics* (Lenci & Sahlgren 2023: 3-25)."
)
with st.expander(r"$\textsf{\Large What are the nearest neighbours?}$"):
st.write(
"Word vectors can be used as coordinates to represent words in a geometric space, called \
*semantic space*. Words with similar vectors, occurring in similar contexts, are closer in the \
space. The nearest neighbours to a word are the closest words to it in the semantic space. \
Words close in the space are not necessarily synonyms, they are rather in a relationship of \
semantic relatedness, i.e. they belong to the same semantic area. An example of neighbours \
in the space could be: *star – moon – sun – cloud – plane – fly – blue*."
)
with st.expander(r"$\textsf{\Large Are the nearest neighbours the same as concordances?}$"):
st.write(
"No. The nearest neighbours to a target word do not necessarily occur together with it in the \
same context, but each of them will be found in similar lexical contexts. For example, my \
colleague Pete and I may often go to the same type of conferences and meet the same \
group of people there, but it is quite possible that Pete and I never go to the same \
conference at the same time. Pete and I are similar, but not necessarily spending time \
together. The extraction of the nearest neighbours with word embeddings is thus different \
from finding concordances. The nearest neighbours cannot be extracted manually with close- \
reading methods."
)
with st.expander(r"$\textsf{\Large Which framework and parameters were used to train the models?}$"):
st.write(
"The Word2vec models were trained by using the CADE framework (Bianchi *et al.* 2020), a \
technique which does not require space alignment, i.e. word embeddings trained on different \
corpus slices are directly comparable. CADE was used with the following parameters: \
size=30, siter=5, diter=5, workers=4, sg=0, ns=20. The chosen architecture was the \
Continuous-Bag-of-Words. The context that is taken into account for each word are the 5 \
words before, and the 5 words after the target word."
)
with st.expander(r"$\textsf{\Large What is the cosine similarity value?}$"):
st.write(
"The cosine similarity is a measure of the distance between two words in the semantic space. \
More precisely, the cosine similarity is the cosine of angle between the two vectors in the \
multi-dimensional space. The value ranges from -1 to 1. The higher the value of the cosine \
similarity (the closer it is to 1), the closer two words are in the semantic space. For example, \
according to our model, the cosine similarity value of πατήρ and μήτηρ in the Classical period \
is 0.93, relatively high as we might expected for these obviously related words, while the \
cosine similarity value of a random pair like πατήρ and τράπεζα in the same time slice is \
0.12, considerably lower."
)
with st.expander(r"$\textsf{\Large What are the 3D representations?}$"):
st.write(
"The 3D representation is a way to graphically visualize the semantic space, the method used \
on this website is called t-SNE. Semantic spaces are multi-dimensional, with as many \
dimensions as the digits in the vectors. The embeddings used for this interface only have 30 \
dimensions. A 3D representation reduces the dimensions to 3, to allow for graphic \
representation. Even if 3D representations are effective means of making a semantic space \
visible, **they are not 100% accurate**, since the visualization shows a reduction of the 30 \
dimensions. We thus advise not to base any conclusions on the graphic representation only, \
but to rely on nearest neighbours extraction and on cosine similarity."
)
with st.expander(r"$\textsf{\Large Is the information stored by Word Embeddings reliable?}$"):
st.write(
"The information stored in word embeddings is solely based on the training corpus. This \
means that our models have no additional knowledge of the Ancient Greek language and \
culture. All information extracted from a model thus reflect word co-occurrences, and word \
meaning, in its specific training corpus. \
\
Please take into account that the results for words occurring very rarely may be inaccurate. \
Language modelling works on a statistical basis, so that a word with only few occurrences \
may not provide enough evidence to obtain reliable results. But it has been observed that an \
extremely high word frequency can also affect the results. It often happens that the nearest \
neighbours to words occurring very often are other high-frequency words, such as stop \
words (e.g., prepositions, articles, particles). "
)
with st.expander(r"$\textsf{\Large What if I obtain 'strange' results?}$"):
st.write(
"For the abovementioned reasons mentioned, word embeddings are not always reliable \
methods of semantic investigation. Interpretation of the results is always needed to decide \
whether the results at hand are real patterns present in the corpus, and could thus reveal \
interesting phenomena, or just noise present in the data."
)
with st.expander(r"$\textsf{\Large How can word embeddings help us study semantic change?}$"):
st.write(
"Cosine similarity can be computed between vectors of the same word in different time slices. \
The higher the cosine similarity, the more similar the usage of a word is in the two considered \
time slices. If the cosine similarity between a word’s vectors in two consecutive time slices is \
particularly low, there is a chance that semantic change happened at that point in time. The \
analysis of the nearest neighbours to the target word in the two slices can help clarifying if \
change actually happened, and which is its direction."
)
st.markdown("""
## References
Bianchi, F., Di Carlo, V., Nicoli, P., & Palmonari, M. (2020). Compass-aligned distributional
embeddings for studying semantic differences across corpora. *arXiv preprint
arXiv:2004.06519*.
Lenci, A., & Sahlgren, M. (2023). *Distributional semantics*. Cambridge University Press.
Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word
representations in vector space. *arXiv preprint arXiv:1301.3781*.
Vatri, A., & McGillivray, B. (2018). The Diorisis ancient Greek corpus: Linguistics and
literature. *Research Data Journal for the Humanities and Social Sciences*, 3(1), 55-65.
""")
if selected == "Subcorpora":
st.markdown("""
## Subcorpora
| Time Slice | Tokens | Authors/Texts |
|--------------------------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Archaic (Homer-500 BCE) | 229,999 | Homer, Hesiod, *Shield of Heracles*, 34 Homeric hymns. |
| Classical (499-324 BCE) | 2,628,193 | Andocides, Aeneas Tacticus, Antiphon, Aeschines, Aeschylus, Aristophanes, Aristotle, Demosthenes, Demades, Euripides, Herodotus, Hippocrates, Hyperides, Isaeus, Isocrates, Lycurgus, Lysias, Pindar, Plato, Sophocles, Thucydides, Xenophon. |
| Hellenistic (323-31 BCE) | 1,471,917 | Apollonius Rhodius, Aratus, Asclepiodotus, Callimachus, Bion of Phlossa, Demetrius, *Against Dionysodorus* (Demosthenes), Dinarchus, Diodorus, Euclides, Hyperides, Moschus, Lycophron, Septuaginta, Polybius, Theocritus, Theophrastus. |
| Early Roman (30 BCE-250 CE) | 4,900,879 | Achilles Tatius, Aelian, Appian, Agathemerus, Aelius Aristides, Aretaeus, Arrian, Athenaeus, Barnabas, Cassius Dio, Clement of Alexandria, Claudius Ptolemy, Chariton, Dio Chrysostom, Diogenes Laertius, Dionysius of Halicarnassus, Epictetus, Flavius Josephus, Harpocration, Galen, Lucian, Longinus, Longus, New Testament, Marcus Aurelius, Oppian, Oppian of Apamaea, Onasander, Philostratus the Athenian, Philostratus the Younger, Parthenius of Nicaea, Pausanias, Philostratus of Lemnos, Plutarch, Pseudo Apollodorus, Pseudo-Aristides, Pseudo-Plutarch, *Second Alcibiades*, Strabo, Triphiodorus, Xenophon of Ephesus. |
| Late Roman (251-500 CE) | 753,907 | Callistratus, Basilius, Eusebius of Caesarea, Julian the Emperor, Nonnus, Plotinus, Quintus Smyrnaeus. |
""", unsafe_allow_html=True)
if selected == "License":
st.markdown("""
## License
The cosine similarity, nearest neighbours, and 3D representation data are licensed under a CC BY License.
The LSJ dictionary has a CC BY-SA license and comes from the Unicode version of the dictionary produced by \
[Giuseppe G. A. Celano](%s). The original (Betacode) version is provided under a CC BY-SA license by the [Perseus Digital Library](https://www.perseus.tufts.edu/). \
Data available at https://github.com/PerseusDL/lexica/.
""" % 'https://github.com/gcelano/LSJ_GreekUnicode?tab=readme-ov-file')
streamlit_style = """
<style>
html, body {
font-family: 'Helvetica';
}
</style>
"""
st.markdown(streamlit_style, unsafe_allow_html=True) |