APISR / architecture /grl_common /swin_v1_block.py
HikariDawn's picture
feat: initial push
561c629
raw
history blame
20.7 kB
from math import prod
import torch
import torch.nn as nn
from architecture.grl_common.ops import (
bchw_to_blc,
blc_to_bchw,
calculate_mask,
window_partition,
window_reverse,
)
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
class Mlp(nn.Module):
"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""
def __init__(
self,
in_features,
hidden_features=None,
out_features=None,
act_layer=nn.GELU,
drop=0.0,
):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
drop_probs = to_2tuple(drop)
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = act_layer()
self.drop1 = nn.Dropout(drop_probs[0])
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop2 = nn.Dropout(drop_probs[1])
def forward(self, x):
x = self.fc1(x)
x = self.act(x)
x = self.drop1(x)
x = self.fc2(x)
x = self.drop2(x)
return x
class WindowAttentionV1(nn.Module):
r"""Window based multi-head self attention (W-MSA) module with relative position bias.
It supports both of shifted and non-shifted window.
Args:
dim (int): Number of input channels.
window_size (tuple[int]): The height and width of the window.
num_heads (int): Number of attention heads.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
"""
def __init__(
self,
dim,
window_size,
num_heads,
qkv_bias=True,
qk_scale=None,
attn_drop=0.0,
proj_drop=0.0,
use_pe=True,
):
super().__init__()
self.dim = dim
self.window_size = window_size # Wh, Ww
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = qk_scale or head_dim**-0.5
self.use_pe = use_pe
if self.use_pe:
# define a parameter table of relative position bias
ws = self.window_size
table = torch.zeros((2 * ws[0] - 1) * (2 * ws[1] - 1), num_heads)
self.relative_position_bias_table = nn.Parameter(table)
# 2*Wh-1 * 2*Ww-1, nH
trunc_normal_(self.relative_position_bias_table, std=0.02)
self.get_relative_position_index(self.window_size)
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.softmax = nn.Softmax(dim=-1)
def get_relative_position_index(self, window_size):
# get pair-wise relative position index for each token inside the window
coord_h = torch.arange(window_size[0])
coord_w = torch.arange(window_size[1])
coords = torch.stack(torch.meshgrid([coord_h, coord_w])) # 2, Wh, Ww
coords = torch.flatten(coords, 1) # 2, Wh*Ww
coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww
coords = coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
coords[:, :, 0] += window_size[0] - 1 # shift to start from 0
coords[:, :, 1] += window_size[1] - 1
coords[:, :, 0] *= 2 * window_size[1] - 1
relative_position_index = coords.sum(-1) # Wh*Ww, Wh*Ww
self.register_buffer("relative_position_index", relative_position_index)
def forward(self, x, mask=None):
"""
Args:
x: input features with shape of (num_windows*B, N, C)
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
"""
B_, N, C = x.shape
# qkv projection
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0], qkv[1], qkv[2]
# attention map
q = q * self.scale
attn = q @ k.transpose(-2, -1)
# positional encoding
if self.use_pe:
win_dim = prod(self.window_size)
bias = self.relative_position_bias_table[
self.relative_position_index.view(-1)
]
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous()
# nH, Wh*Ww, Wh*Ww
attn = attn + bias.unsqueeze(0)
# shift attention mask
if mask is not None:
nW = mask.shape[0]
mask = mask.unsqueeze(1).unsqueeze(0)
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask
attn = attn.view(-1, self.num_heads, N, N)
# attention
attn = self.softmax(attn)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
# output projection
x = self.proj(x)
x = self.proj_drop(x)
return x
def extra_repr(self) -> str:
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}"
def flops(self, N):
# calculate flops for 1 window with token length of N
flops = 0
# qkv = self.qkv(x)
flops += N * self.dim * 3 * self.dim
# attn = (q @ k.transpose(-2, -1))
flops += self.num_heads * N * (self.dim // self.num_heads) * N
# x = (attn @ v)
flops += self.num_heads * N * N * (self.dim // self.num_heads)
# x = self.proj(x)
flops += N * self.dim * self.dim
return flops
class WindowAttentionWrapperV1(WindowAttentionV1):
def __init__(self, shift_size, input_resolution, **kwargs):
super(WindowAttentionWrapperV1, self).__init__(**kwargs)
self.shift_size = shift_size
self.input_resolution = input_resolution
if self.shift_size > 0:
attn_mask = calculate_mask(input_resolution, self.window_size, shift_size)
else:
attn_mask = None
self.register_buffer("attn_mask", attn_mask)
def forward(self, x, x_size):
H, W = x_size
B, L, C = x.shape
x = x.view(B, H, W, C)
# cyclic shift
if self.shift_size > 0:
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
# partition windows
x = window_partition(x, self.window_size) # nW*B, wh, ww, C
x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size
if self.input_resolution == x_size:
attn_mask = self.attn_mask
else:
attn_mask = calculate_mask(x_size, self.window_size, self.shift_size)
attn_mask = attn_mask.to(x.device)
# attention
x = super(WindowAttentionWrapperV1, self).forward(x, mask=attn_mask)
# nW*B, wh*ww, C
# merge windows
x = x.view(-1, *self.window_size, C)
x = window_reverse(x, self.window_size, x_size) # B, H, W, C
# reverse cyclic shift
if self.shift_size > 0:
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
x = x.view(B, H * W, C)
return x
class SwinTransformerBlockV1(nn.Module):
r"""Swin Transformer Block.
Args:
dim (int): Number of input channels.
input_resolution (tuple[int]): Input resulotion.
num_heads (int): Number of attention heads.
window_size (int): Window size.
shift_size (int): Shift size for SW-MSA.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
drop (float, optional): Dropout rate. Default: 0.0
attn_drop (float, optional): Attention dropout rate. Default: 0.0
drop_path (float, optional): Stochastic depth rate. Default: 0.0
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(
self,
dim,
input_resolution,
num_heads,
window_size=7,
shift_size=0,
mlp_ratio=4.0,
qkv_bias=True,
qk_scale=None,
drop=0.0,
attn_drop=0.0,
drop_path=0.0,
act_layer=nn.GELU,
norm_layer=nn.LayerNorm,
use_pe=True,
res_scale=1.0,
):
super().__init__()
self.dim = dim
self.input_resolution = input_resolution
self.num_heads = num_heads
self.window_size = window_size
self.shift_size = shift_size
self.mlp_ratio = mlp_ratio
if min(self.input_resolution) <= self.window_size:
# if window size is larger than input resolution, we don't partition windows
self.shift_size = 0
self.window_size = min(self.input_resolution)
assert (
0 <= self.shift_size < self.window_size
), "shift_size must in 0-window_size"
self.res_scale = res_scale
self.norm1 = norm_layer(dim)
self.attn = WindowAttentionWrapperV1(
shift_size=self.shift_size,
input_resolution=self.input_resolution,
dim=dim,
window_size=to_2tuple(self.window_size),
num_heads=num_heads,
qkv_bias=qkv_bias,
qk_scale=qk_scale,
attn_drop=attn_drop,
proj_drop=drop,
use_pe=use_pe,
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(
in_features=dim,
hidden_features=int(dim * mlp_ratio),
act_layer=act_layer,
drop=drop,
)
def forward(self, x, x_size):
# Window attention
x = x + self.res_scale * self.drop_path(self.attn(self.norm1(x), x_size))
# FFN
x = x + self.res_scale * self.drop_path(self.mlp(self.norm2(x)))
return x
def extra_repr(self) -> str:
return (
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, "
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}"
)
def flops(self):
flops = 0
H, W = self.input_resolution
# norm1
flops += self.dim * H * W
# W-MSA/SW-MSA
nW = H * W / self.window_size / self.window_size
flops += nW * self.attn.flops(self.window_size * self.window_size)
# mlp
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio
# norm2
flops += self.dim * H * W
return flops
class PatchMerging(nn.Module):
r"""Patch Merging Layer.
Args:
input_resolution (tuple[int]): Resolution of input feature.
dim (int): Number of input channels.
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
"""
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
def extra_repr(self) -> str:
return f"input_resolution={self.input_resolution}, dim={self.dim}"
def flops(self):
H, W = self.input_resolution
flops = H * W * self.dim
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim
return flops
class PatchEmbed(nn.Module):
r"""Image to Patch Embedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
if norm_layer is not None:
self.norm = norm_layer(embed_dim)
else:
self.norm = None
def forward(self, x):
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C
if self.norm is not None:
x = self.norm(x)
return x
def flops(self):
flops = 0
H, W = self.img_size
if self.norm is not None:
flops += H * W * self.embed_dim
return flops
class PatchUnEmbed(nn.Module):
r"""Image to Patch Unembedding
Args:
img_size (int): Image size. Default: 224.
patch_size (int): Patch token size. Default: 4.
in_chans (int): Number of input image channels. Default: 3.
embed_dim (int): Number of linear projection output channels. Default: 96.
norm_layer (nn.Module, optional): Normalization layer. Default: None
"""
def __init__(
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None
):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
patches_resolution = [
img_size[0] // patch_size[0],
img_size[1] // patch_size[1],
]
self.img_size = img_size
self.patch_size = patch_size
self.patches_resolution = patches_resolution
self.num_patches = patches_resolution[0] * patches_resolution[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
def forward(self, x, x_size):
B, HW, C = x.shape
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C
return x
def flops(self):
flops = 0
return flops
class Linear(nn.Linear):
def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__(in_features, out_features, bias)
def forward(self, x):
B, C, H, W = x.shape
x = bchw_to_blc(x)
x = super(Linear, self).forward(x)
x = blc_to_bchw(x, (H, W))
return x
def build_last_conv(conv_type, dim):
if conv_type == "1conv":
block = nn.Conv2d(dim, dim, 3, 1, 1)
elif conv_type == "3conv":
# to save parameters and memory
block = nn.Sequential(
nn.Conv2d(dim, dim // 4, 3, 1, 1),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0),
nn.LeakyReLU(negative_slope=0.2, inplace=True),
nn.Conv2d(dim // 4, dim, 3, 1, 1),
)
elif conv_type == "1conv1x1":
block = nn.Conv2d(dim, dim, 1, 1, 0)
elif conv_type == "linear":
block = Linear(dim, dim)
return block
# class BasicLayer(nn.Module):
# """A basic Swin Transformer layer for one stage.
# Args:
# dim (int): Number of input channels.
# input_resolution (tuple[int]): Input resolution.
# depth (int): Number of blocks.
# num_heads (int): Number of attention heads.
# window_size (int): Local window size.
# mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
# qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
# qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
# drop (float, optional): Dropout rate. Default: 0.0
# attn_drop (float, optional): Attention dropout rate. Default: 0.0
# drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
# norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
# downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
# args: Additional arguments
# """
# def __init__(
# self,
# dim,
# input_resolution,
# depth,
# num_heads,
# window_size,
# mlp_ratio=4.0,
# qkv_bias=True,
# qk_scale=None,
# drop=0.0,
# attn_drop=0.0,
# drop_path=0.0,
# norm_layer=nn.LayerNorm,
# downsample=None,
# args=None,
# ):
# super().__init__()
# self.dim = dim
# self.input_resolution = input_resolution
# self.depth = depth
# # build blocks
# self.blocks = nn.ModuleList(
# [
# _parse_block(
# dim=dim,
# input_resolution=input_resolution,
# num_heads=num_heads,
# window_size=window_size,
# shift_size=0
# if args.no_shift
# else (0 if (i % 2 == 0) else window_size // 2),
# mlp_ratio=mlp_ratio,
# qkv_bias=qkv_bias,
# qk_scale=qk_scale,
# drop=drop,
# attn_drop=attn_drop,
# drop_path=drop_path[i]
# if isinstance(drop_path, list)
# else drop_path,
# norm_layer=norm_layer,
# stripe_type="H" if (i % 2 == 0) else "W",
# args=args,
# )
# for i in range(depth)
# ]
# )
# # self.blocks = nn.ModuleList(
# # [
# # STV1Block(
# # dim=dim,
# # input_resolution=input_resolution,
# # num_heads=num_heads,
# # window_size=window_size,
# # shift_size=0 if (i % 2 == 0) else window_size // 2,
# # mlp_ratio=mlp_ratio,
# # qkv_bias=qkv_bias,
# # qk_scale=qk_scale,
# # drop=drop,
# # attn_drop=attn_drop,
# # drop_path=drop_path[i]
# # if isinstance(drop_path, list)
# # else drop_path,
# # norm_layer=norm_layer,
# # )
# # for i in range(depth)
# # ]
# # )
# # patch merging layer
# if downsample is not None:
# self.downsample = downsample(
# input_resolution, dim=dim, norm_layer=norm_layer
# )
# else:
# self.downsample = None
# def forward(self, x, x_size):
# for blk in self.blocks:
# x = blk(x, x_size)
# if self.downsample is not None:
# x = self.downsample(x)
# return x
# def extra_repr(self) -> str:
# return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
# def flops(self):
# flops = 0
# for blk in self.blocks:
# flops += blk.flops()
# if self.downsample is not None:
# flops += self.downsample.flops()
# return flops