Spaces:
Running
on
T4
Running
on
T4
from math import prod | |
import torch | |
import torch.nn as nn | |
from architecture.grl_common.ops import ( | |
bchw_to_blc, | |
blc_to_bchw, | |
calculate_mask, | |
window_partition, | |
window_reverse, | |
) | |
from timm.models.layers import DropPath, to_2tuple, trunc_normal_ | |
class Mlp(nn.Module): | |
"""MLP as used in Vision Transformer, MLP-Mixer and related networks""" | |
def __init__( | |
self, | |
in_features, | |
hidden_features=None, | |
out_features=None, | |
act_layer=nn.GELU, | |
drop=0.0, | |
): | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
drop_probs = to_2tuple(drop) | |
self.fc1 = nn.Linear(in_features, hidden_features) | |
self.act = act_layer() | |
self.drop1 = nn.Dropout(drop_probs[0]) | |
self.fc2 = nn.Linear(hidden_features, out_features) | |
self.drop2 = nn.Dropout(drop_probs[1]) | |
def forward(self, x): | |
x = self.fc1(x) | |
x = self.act(x) | |
x = self.drop1(x) | |
x = self.fc2(x) | |
x = self.drop2(x) | |
return x | |
class WindowAttentionV1(nn.Module): | |
r"""Window based multi-head self attention (W-MSA) module with relative position bias. | |
It supports both of shifted and non-shifted window. | |
Args: | |
dim (int): Number of input channels. | |
window_size (tuple[int]): The height and width of the window. | |
num_heads (int): Number of attention heads. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set | |
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 | |
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 | |
""" | |
def __init__( | |
self, | |
dim, | |
window_size, | |
num_heads, | |
qkv_bias=True, | |
qk_scale=None, | |
attn_drop=0.0, | |
proj_drop=0.0, | |
use_pe=True, | |
): | |
super().__init__() | |
self.dim = dim | |
self.window_size = window_size # Wh, Ww | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = qk_scale or head_dim**-0.5 | |
self.use_pe = use_pe | |
if self.use_pe: | |
# define a parameter table of relative position bias | |
ws = self.window_size | |
table = torch.zeros((2 * ws[0] - 1) * (2 * ws[1] - 1), num_heads) | |
self.relative_position_bias_table = nn.Parameter(table) | |
# 2*Wh-1 * 2*Ww-1, nH | |
trunc_normal_(self.relative_position_bias_table, std=0.02) | |
self.get_relative_position_index(self.window_size) | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
self.proj = nn.Linear(dim, dim) | |
self.proj_drop = nn.Dropout(proj_drop) | |
self.softmax = nn.Softmax(dim=-1) | |
def get_relative_position_index(self, window_size): | |
# get pair-wise relative position index for each token inside the window | |
coord_h = torch.arange(window_size[0]) | |
coord_w = torch.arange(window_size[1]) | |
coords = torch.stack(torch.meshgrid([coord_h, coord_w])) # 2, Wh, Ww | |
coords = torch.flatten(coords, 1) # 2, Wh*Ww | |
coords = coords[:, :, None] - coords[:, None, :] # 2, Wh*Ww, Wh*Ww | |
coords = coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2 | |
coords[:, :, 0] += window_size[0] - 1 # shift to start from 0 | |
coords[:, :, 1] += window_size[1] - 1 | |
coords[:, :, 0] *= 2 * window_size[1] - 1 | |
relative_position_index = coords.sum(-1) # Wh*Ww, Wh*Ww | |
self.register_buffer("relative_position_index", relative_position_index) | |
def forward(self, x, mask=None): | |
""" | |
Args: | |
x: input features with shape of (num_windows*B, N, C) | |
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None | |
""" | |
B_, N, C = x.shape | |
# qkv projection | |
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0], qkv[1], qkv[2] | |
# attention map | |
q = q * self.scale | |
attn = q @ k.transpose(-2, -1) | |
# positional encoding | |
if self.use_pe: | |
win_dim = prod(self.window_size) | |
bias = self.relative_position_bias_table[ | |
self.relative_position_index.view(-1) | |
] | |
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() | |
# nH, Wh*Ww, Wh*Ww | |
attn = attn + bias.unsqueeze(0) | |
# shift attention mask | |
if mask is not None: | |
nW = mask.shape[0] | |
mask = mask.unsqueeze(1).unsqueeze(0) | |
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask | |
attn = attn.view(-1, self.num_heads, N, N) | |
# attention | |
attn = self.softmax(attn) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) | |
# output projection | |
x = self.proj(x) | |
x = self.proj_drop(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}" | |
def flops(self, N): | |
# calculate flops for 1 window with token length of N | |
flops = 0 | |
# qkv = self.qkv(x) | |
flops += N * self.dim * 3 * self.dim | |
# attn = (q @ k.transpose(-2, -1)) | |
flops += self.num_heads * N * (self.dim // self.num_heads) * N | |
# x = (attn @ v) | |
flops += self.num_heads * N * N * (self.dim // self.num_heads) | |
# x = self.proj(x) | |
flops += N * self.dim * self.dim | |
return flops | |
class WindowAttentionWrapperV1(WindowAttentionV1): | |
def __init__(self, shift_size, input_resolution, **kwargs): | |
super(WindowAttentionWrapperV1, self).__init__(**kwargs) | |
self.shift_size = shift_size | |
self.input_resolution = input_resolution | |
if self.shift_size > 0: | |
attn_mask = calculate_mask(input_resolution, self.window_size, shift_size) | |
else: | |
attn_mask = None | |
self.register_buffer("attn_mask", attn_mask) | |
def forward(self, x, x_size): | |
H, W = x_size | |
B, L, C = x.shape | |
x = x.view(B, H, W, C) | |
# cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) | |
# partition windows | |
x = window_partition(x, self.window_size) # nW*B, wh, ww, C | |
x = x.view(-1, prod(self.window_size), C) # nW*B, wh*ww, C | |
# W-MSA/SW-MSA (to be compatible for testing on images whose shapes are the multiple of window size | |
if self.input_resolution == x_size: | |
attn_mask = self.attn_mask | |
else: | |
attn_mask = calculate_mask(x_size, self.window_size, self.shift_size) | |
attn_mask = attn_mask.to(x.device) | |
# attention | |
x = super(WindowAttentionWrapperV1, self).forward(x, mask=attn_mask) | |
# nW*B, wh*ww, C | |
# merge windows | |
x = x.view(-1, *self.window_size, C) | |
x = window_reverse(x, self.window_size, x_size) # B, H, W, C | |
# reverse cyclic shift | |
if self.shift_size > 0: | |
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) | |
x = x.view(B, H * W, C) | |
return x | |
class SwinTransformerBlockV1(nn.Module): | |
r"""Swin Transformer Block. | |
Args: | |
dim (int): Number of input channels. | |
input_resolution (tuple[int]): Input resulotion. | |
num_heads (int): Number of attention heads. | |
window_size (int): Window size. | |
shift_size (int): Shift size for SW-MSA. | |
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
drop (float, optional): Dropout rate. Default: 0.0 | |
attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
drop_path (float, optional): Stochastic depth rate. Default: 0.0 | |
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__( | |
self, | |
dim, | |
input_resolution, | |
num_heads, | |
window_size=7, | |
shift_size=0, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
qk_scale=None, | |
drop=0.0, | |
attn_drop=0.0, | |
drop_path=0.0, | |
act_layer=nn.GELU, | |
norm_layer=nn.LayerNorm, | |
use_pe=True, | |
res_scale=1.0, | |
): | |
super().__init__() | |
self.dim = dim | |
self.input_resolution = input_resolution | |
self.num_heads = num_heads | |
self.window_size = window_size | |
self.shift_size = shift_size | |
self.mlp_ratio = mlp_ratio | |
if min(self.input_resolution) <= self.window_size: | |
# if window size is larger than input resolution, we don't partition windows | |
self.shift_size = 0 | |
self.window_size = min(self.input_resolution) | |
assert ( | |
0 <= self.shift_size < self.window_size | |
), "shift_size must in 0-window_size" | |
self.res_scale = res_scale | |
self.norm1 = norm_layer(dim) | |
self.attn = WindowAttentionWrapperV1( | |
shift_size=self.shift_size, | |
input_resolution=self.input_resolution, | |
dim=dim, | |
window_size=to_2tuple(self.window_size), | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
qk_scale=qk_scale, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
use_pe=use_pe, | |
) | |
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
self.mlp = Mlp( | |
in_features=dim, | |
hidden_features=int(dim * mlp_ratio), | |
act_layer=act_layer, | |
drop=drop, | |
) | |
def forward(self, x, x_size): | |
# Window attention | |
x = x + self.res_scale * self.drop_path(self.attn(self.norm1(x), x_size)) | |
# FFN | |
x = x + self.res_scale * self.drop_path(self.mlp(self.norm2(x))) | |
return x | |
def extra_repr(self) -> str: | |
return ( | |
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " | |
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" | |
) | |
def flops(self): | |
flops = 0 | |
H, W = self.input_resolution | |
# norm1 | |
flops += self.dim * H * W | |
# W-MSA/SW-MSA | |
nW = H * W / self.window_size / self.window_size | |
flops += nW * self.attn.flops(self.window_size * self.window_size) | |
# mlp | |
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio | |
# norm2 | |
flops += self.dim * H * W | |
return flops | |
class PatchMerging(nn.Module): | |
r"""Patch Merging Layer. | |
Args: | |
input_resolution (tuple[int]): Resolution of input feature. | |
dim (int): Number of input channels. | |
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
""" | |
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm): | |
super().__init__() | |
self.input_resolution = input_resolution | |
self.dim = dim | |
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False) | |
self.norm = norm_layer(4 * dim) | |
def forward(self, x): | |
""" | |
x: B, H*W, C | |
""" | |
H, W = self.input_resolution | |
B, L, C = x.shape | |
assert L == H * W, "input feature has wrong size" | |
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even." | |
x = x.view(B, H, W, C) | |
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C | |
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C | |
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C | |
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C | |
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C | |
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C | |
x = self.norm(x) | |
x = self.reduction(x) | |
return x | |
def extra_repr(self) -> str: | |
return f"input_resolution={self.input_resolution}, dim={self.dim}" | |
def flops(self): | |
H, W = self.input_resolution | |
flops = H * W * self.dim | |
flops += (H // 2) * (W // 2) * 4 * self.dim * 2 * self.dim | |
return flops | |
class PatchEmbed(nn.Module): | |
r"""Image to Patch Embedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1], | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
if norm_layer is not None: | |
self.norm = norm_layer(embed_dim) | |
else: | |
self.norm = None | |
def forward(self, x): | |
x = x.flatten(2).transpose(1, 2) # B Ph*Pw C | |
if self.norm is not None: | |
x = self.norm(x) | |
return x | |
def flops(self): | |
flops = 0 | |
H, W = self.img_size | |
if self.norm is not None: | |
flops += H * W * self.embed_dim | |
return flops | |
class PatchUnEmbed(nn.Module): | |
r"""Image to Patch Unembedding | |
Args: | |
img_size (int): Image size. Default: 224. | |
patch_size (int): Patch token size. Default: 4. | |
in_chans (int): Number of input image channels. Default: 3. | |
embed_dim (int): Number of linear projection output channels. Default: 96. | |
norm_layer (nn.Module, optional): Normalization layer. Default: None | |
""" | |
def __init__( | |
self, img_size=224, patch_size=4, in_chans=3, embed_dim=96, norm_layer=None | |
): | |
super().__init__() | |
img_size = to_2tuple(img_size) | |
patch_size = to_2tuple(patch_size) | |
patches_resolution = [ | |
img_size[0] // patch_size[0], | |
img_size[1] // patch_size[1], | |
] | |
self.img_size = img_size | |
self.patch_size = patch_size | |
self.patches_resolution = patches_resolution | |
self.num_patches = patches_resolution[0] * patches_resolution[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
def forward(self, x, x_size): | |
B, HW, C = x.shape | |
x = x.transpose(1, 2).view(B, self.embed_dim, x_size[0], x_size[1]) # B Ph*Pw C | |
return x | |
def flops(self): | |
flops = 0 | |
return flops | |
class Linear(nn.Linear): | |
def __init__(self, in_features, out_features, bias=True): | |
super(Linear, self).__init__(in_features, out_features, bias) | |
def forward(self, x): | |
B, C, H, W = x.shape | |
x = bchw_to_blc(x) | |
x = super(Linear, self).forward(x) | |
x = blc_to_bchw(x, (H, W)) | |
return x | |
def build_last_conv(conv_type, dim): | |
if conv_type == "1conv": | |
block = nn.Conv2d(dim, dim, 3, 1, 1) | |
elif conv_type == "3conv": | |
# to save parameters and memory | |
block = nn.Sequential( | |
nn.Conv2d(dim, dim // 4, 3, 1, 1), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim // 4, 1, 1, 0), | |
nn.LeakyReLU(negative_slope=0.2, inplace=True), | |
nn.Conv2d(dim // 4, dim, 3, 1, 1), | |
) | |
elif conv_type == "1conv1x1": | |
block = nn.Conv2d(dim, dim, 1, 1, 0) | |
elif conv_type == "linear": | |
block = Linear(dim, dim) | |
return block | |
# class BasicLayer(nn.Module): | |
# """A basic Swin Transformer layer for one stage. | |
# Args: | |
# dim (int): Number of input channels. | |
# input_resolution (tuple[int]): Input resolution. | |
# depth (int): Number of blocks. | |
# num_heads (int): Number of attention heads. | |
# window_size (int): Local window size. | |
# mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. | |
# qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True | |
# qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set. | |
# drop (float, optional): Dropout rate. Default: 0.0 | |
# attn_drop (float, optional): Attention dropout rate. Default: 0.0 | |
# drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0 | |
# norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm | |
# downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None | |
# args: Additional arguments | |
# """ | |
# def __init__( | |
# self, | |
# dim, | |
# input_resolution, | |
# depth, | |
# num_heads, | |
# window_size, | |
# mlp_ratio=4.0, | |
# qkv_bias=True, | |
# qk_scale=None, | |
# drop=0.0, | |
# attn_drop=0.0, | |
# drop_path=0.0, | |
# norm_layer=nn.LayerNorm, | |
# downsample=None, | |
# args=None, | |
# ): | |
# super().__init__() | |
# self.dim = dim | |
# self.input_resolution = input_resolution | |
# self.depth = depth | |
# # build blocks | |
# self.blocks = nn.ModuleList( | |
# [ | |
# _parse_block( | |
# dim=dim, | |
# input_resolution=input_resolution, | |
# num_heads=num_heads, | |
# window_size=window_size, | |
# shift_size=0 | |
# if args.no_shift | |
# else (0 if (i % 2 == 0) else window_size // 2), | |
# mlp_ratio=mlp_ratio, | |
# qkv_bias=qkv_bias, | |
# qk_scale=qk_scale, | |
# drop=drop, | |
# attn_drop=attn_drop, | |
# drop_path=drop_path[i] | |
# if isinstance(drop_path, list) | |
# else drop_path, | |
# norm_layer=norm_layer, | |
# stripe_type="H" if (i % 2 == 0) else "W", | |
# args=args, | |
# ) | |
# for i in range(depth) | |
# ] | |
# ) | |
# # self.blocks = nn.ModuleList( | |
# # [ | |
# # STV1Block( | |
# # dim=dim, | |
# # input_resolution=input_resolution, | |
# # num_heads=num_heads, | |
# # window_size=window_size, | |
# # shift_size=0 if (i % 2 == 0) else window_size // 2, | |
# # mlp_ratio=mlp_ratio, | |
# # qkv_bias=qkv_bias, | |
# # qk_scale=qk_scale, | |
# # drop=drop, | |
# # attn_drop=attn_drop, | |
# # drop_path=drop_path[i] | |
# # if isinstance(drop_path, list) | |
# # else drop_path, | |
# # norm_layer=norm_layer, | |
# # ) | |
# # for i in range(depth) | |
# # ] | |
# # ) | |
# # patch merging layer | |
# if downsample is not None: | |
# self.downsample = downsample( | |
# input_resolution, dim=dim, norm_layer=norm_layer | |
# ) | |
# else: | |
# self.downsample = None | |
# def forward(self, x, x_size): | |
# for blk in self.blocks: | |
# x = blk(x, x_size) | |
# if self.downsample is not None: | |
# x = self.downsample(x) | |
# return x | |
# def extra_repr(self) -> str: | |
# return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}" | |
# def flops(self): | |
# flops = 0 | |
# for blk in self.blocks: | |
# flops += blk.flops() | |
# if self.downsample is not None: | |
# flops += self.downsample.flops() | |
# return flops | |