Spaces:
Sleeping
Sleeping
File size: 9,003 Bytes
410390c 227ec7b 0e63678 410390c 0e63678 00a3421 3e67bfd 631e498 00a3421 3e67bfd 0e63678 3e67bfd 410390c 0e63678 3e67bfd 631e498 059d70c 410390c 0e63678 410390c 631e498 410390c 0e63678 410390c 0e63678 410390c 631e498 410390c 0e63678 d44fda2 631e498 d44fda2 0a0a222 631e498 299d616 3e67bfd 299d616 631e498 0e63678 a9f88be 0e63678 d44fda2 410390c 0a0a222 d44fda2 631e498 d44fda2 0a0a222 57437b7 631e498 0e63678 57437b7 3e67bfd d44fda2 0e63678 d44fda2 631e498 0a0a222 631e498 f8e43db 0a0a222 631e498 c32fab0 3e67bfd 631e498 059d70c 631e498 410390c 0e63678 410390c 0e63678 c32fab0 410390c f8e43db 059d70c f8e43db 631e498 410390c 0e63678 d44fda2 410390c 0e63678 410390c 631e498 3e67bfd 631e498 3e67bfd 227ec7b 0e63678 3e67bfd 410390c 0e63678 1642e7d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 |
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from huggingface_hub import hf_hub_download
import asyncio
# Configuraci贸n del logger
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
MAX_TOKENS = 1024
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
PIPELINE_MAP = {
"text-generation": "text-generation",
"sentiment-analysis": "sentiment-analysis",
"translation": "translation",
"fill-mask": "fill-mask",
"question-answering": "question-answering",
"text-to-speech": "text-to-speech",
"text-to-video": "text-to-video",
"text-to-image": "text-to-image"
}
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
async def stream_from_s3(self, key):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._stream_from_s3, key)
def _stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
async def get_model_file_parts(self, model_name):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
def _get_model_file_parts(self, model_name):
try:
model_prefix = model_name.lower()
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_prefix)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_prefix in obj['Key']]
return model_files
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
async def load_model_from_s3(self, model_name):
try:
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
model_prefix = f"{profile}/{model}".lower()
model_files = await self.get_model_file_parts(model_prefix)
if not model_files:
await self.download_and_upload_to_s3(model_prefix, model)
config_stream = await self.stream_from_s3(f"{model_prefix}/config.json")
config_data = config_stream.read()
if not config_data:
raise HTTPException(status_code=500, detail=f"El archivo de configuraci贸n {model_prefix}/config.json est谩 vac铆o o no se pudo leer.")
config_text = config_data.decode("utf-8")
config_json = json.loads(config_text)
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_prefix}", config=config_json, from_tf=False)
return model
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
async def load_tokenizer_from_s3(self, model_name):
try:
profile, model = model_name.split("/", 1) if "/" in model_name else ("", model_name)
tokenizer_stream = await self.stream_from_s3(f"{profile}/{model}/tokenizer.json")
tokenizer_data = tokenizer_stream.read().decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{profile}/{model}")
return tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
async def create_s3_folders(self, s3_key):
try:
folder_keys = s3_key.split('/')
for i in range(1, len(folder_keys)):
folder_key = '/'.join(folder_keys[:i]) + '/'
if not await self.file_exists_in_s3(folder_key):
logger.info(f"Creando carpeta en S3: {folder_key}")
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
async def file_exists_in_s3(self, s3_key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
return True
except self.s3_client.exceptions.ClientError:
return False
async def download_and_upload_to_s3(self, model_prefix, model_name):
try:
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN)
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN)
if not await self.file_exists_in_s3(f"{model_prefix}/config.json"):
with open(config_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/config.json", Body=file)
if not await self.file_exists_in_s3(f"{model_prefix}/tokenizer.json"):
with open(tokenizer_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_prefix}/tokenizer.json", Body=file)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
tokens = tokenizer.encode(text)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk = tokens[i:i+max_tokens]
chunks.append(tokenizer.decode(chunk))
return chunks
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
generated_text = ""
while len(input_text) > 0:
tokens = tokenizer.encode(input_text)
input_text = tokenizer.decode(tokens[:max_tokens])
output = model.generate(input_ids=tokenizer.encode(input_text, return_tensors="pt").input_ids)
generated_text += tokenizer.decode(output[0], skip_special_tokens=True)
input_text = input_text[len(input_text):]
return generated_text
@app.post("/predict/")
async def predict(model_request: dict):
try:
model_name = model_request.get("model_name")
task = model_request.get("pipeline_task")
input_text = model_request.get("input_text")
if not model_name or not task or not input_text:
raise HTTPException(status_code=400, detail="Faltan par谩metros en la solicitud.")
streamer = S3DirectStream(S3_BUCKET_NAME)
await streamer.create_s3_folders(model_name)
model = await streamer.load_model_from_s3(model_name)
tokenizer = await streamer.load_tokenizer_from_s3(model_name)
if task not in PIPELINE_MAP:
raise HTTPException(status_code=400, detail="Pipeline task no soportado")
nlp_pipeline = pipeline(PIPELINE_MAP[task], model=model, tokenizer=tokenizer)
result = await asyncio.to_thread(nlp_pipeline, input_text)
if len(result) > MAX_TOKENS:
chunks = split_text_by_tokens(result, tokenizer)
full_result = ""
for chunk in chunks:
full_result += continue_generation(chunk, model, tokenizer)
return {"result": full_result}
return {"result": result}
except HTTPException as e:
logger.error(f"Error al realizar la predicci贸n: {str(e.detail)}")
return JSONResponse(status_code=e.status_code, content={"detail": str(e.detail)})
except Exception as e:
logger.error(f"Error inesperado: {str(e)}")
return JSONResponse(status_code=500, content={"detail": "Error inesperado. Intenta m谩s tarde."})
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=7860)
|