File size: 33,566 Bytes
014edf2
e31f7ec
 
eda5cd9
e31f7ec
6a7d8ad
 
5d00129
 
 
d9e405b
05818b6
ad7c7d8
 
 
 
 
 
 
 
 
 
 
6a7d8ad
5d00129
eda5cd9
05818b6
6a7d8ad
944ca71
ad7c7d8
 
 
 
 
6a7d8ad
e31f7ec
6a7d8ad
 
 
ad7c7d8
 
 
 
6a7d8ad
2b9f02a
6a7d8ad
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
014edf2
 
 
 
1949d3a
ad7c7d8
 
 
2b9f02a
014edf2
eda5cd9
ad7c7d8
 
e31f7ec
 
 
 
 
 
 
ad7c7d8
 
 
 
 
 
eda5cd9
1949d3a
6a7d8ad
 
 
5d00129
 
eda5cd9
5d00129
 
 
 
 
 
ad7c7d8
 
 
 
 
 
6a7d8ad
 
 
 
ad7c7d8
e31f7ec
ad7c7d8
e31f7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
e31f7ec
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a7d8ad
5d00129
ad7c7d8
014edf2
ad7c7d8
05818b6
 
 
 
 
014edf2
5d00129
ad7c7d8
 
 
5d00129
014edf2
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a99f3c
1836b57
 
 
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836b57
ad7c7d8
6a7d8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eda5cd9
 
ad7c7d8
05818b6
ad7c7d8
6a7d8ad
ad7c7d8
 
 
 
05818b6
ad7c7d8
6a7d8ad
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
6a7d8ad
ad7c7d8
6a7d8ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a7d8ad
ad7c7d8
6a7d8ad
ad7c7d8
 
e31f7ec
 
ad7c7d8
 
 
6a7d8ad
ad7c7d8
6a7d8ad
ad7c7d8
 
 
 
 
 
 
 
 
 
 
6a7d8ad
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
6a7d8ad
ad7c7d8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6a7d8ad
 
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
 
6a7d8ad
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
 
6a7d8ad
ad7c7d8
 
 
6a7d8ad
 
 
 
 
 
ad7c7d8
 
 
 
 
6a7d8ad
 
 
 
 
 
ad7c7d8
 
 
6a7d8ad
 
ad7c7d8
6a7d8ad
 
ad7c7d8
6a7d8ad
ad7c7d8
 
 
 
 
6a7d8ad
ad7c7d8
6a7d8ad
 
 
 
 
 
ad7c7d8
 
05818b6
ad7c7d8
05818b6
 
ad7c7d8
 
 
 
 
6a7d8ad
 
 
ad7c7d8
2b9f02a
 
 
 
 
 
 
 
 
 
 
ad7c7d8
2b9f02a
 
ad7c7d8
6a7d8ad
ad7c7d8
 
 
 
 
2b9f02a
6a7d8ad
eda5cd9
ad7c7d8
 
 
 
2b9f02a
 
 
 
ad7c7d8
 
 
 
2b9f02a
 
ad7c7d8
2b9f02a
6a7d8ad
2b9f02a
6a7d8ad
eda5cd9
 
ad7c7d8
2b9f02a
 
ad7c7d8
2b9f02a
6a7d8ad
eda5cd9
ad7c7d8
 
 
 
 
2b9f02a
ad7c7d8
2b9f02a
6a7d8ad
ad7c7d8
 
 
 
 
 
2b9f02a
 
 
 
 
 
 
 
 
 
 
ad7c7d8
 
 
 
e31f7ec
 
 
 
 
eda5cd9
2b9f02a
 
 
 
 
 
 
 
 
 
 
014edf2
e3f2a48
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
import os
import json
import uvicorn
import torch
from fastapi import FastAPI, HTTPException, UploadFile, File, Depends, BackgroundTasks, Request, status
from fastapi.responses import StreamingResponse, JSONResponse, FileResponse, HTMLResponse
from pydantic import BaseModel, validator, Field, root_validator, EmailStr, constr
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    GenerationConfig,
    StoppingCriteriaList,
    pipeline,
    AutoProcessor,
    AutoModelForImageClassification,
    AutoModelForSeq2SeqLM,
    AutoModelForQuestionAnswering,
    AutoModelForSpeechSeq2Seq,
    AutoModelForImageSegmentation,
    AutoFeatureExtractor,
    AutoModelForTokenClassification,
    AutoModelForMaskedLM,
    AutoModelForObjectDetection,
    AutoImageProcessor,
)
from io import BytesIO
import boto3
from botocore.exceptions import ClientError
from huggingface_hub import snapshot_download
import tempfile
import hashlib
from PIL import Image
from typing import Optional, List, Union, Dict, Any
import uuid
import logging
from fastapi.exceptions import RequestValidationError
from passlib.context import CryptContext
from jose import JWTError, jwt
from datetime import datetime, timedelta
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
from fastapi.middleware.gzip import GZipMiddleware
from fastapi.security import APIKeyHeader, OAuth2PasswordBearer, OAuth2PasswordRequestForm
from starlette.middleware.cors import CORSMiddleware
import asyncpg

logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(filename)s - %(lineno)d - %(message)s')
logger = logging.getLogger(__name__)

SECRET_KEY = os.getenv("SECRET_KEY")
if not SECRET_KEY:
    raise ValueError("SECRET_KEY must be set.")
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_MINUTES = 30

pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto")

oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
API_KEY = os.getenv("API_KEY")
api_key_header = APIKeyHeader(name="X-API-Key")

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
TEMP_DIR = "/tmp"
STATIC_DIR = "static"
TEMPLATES = Jinja2Templates(directory="templates")
DATABASE_URL = os.getenv("DATABASE_URL")

app = FastAPI()
app.mount("/static", StaticFiles(directory=STATIC_DIR), name="static")
app.add_middleware(GZipMiddleware)
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)


class User(BaseModel):
    username: constr(min_length=3, max_length=50)
    email: EmailStr
    password: constr(min_length=8)

class GenerateRequest(BaseModel):
    model_id: str
    input_text: Optional[str] = Field(None)
    task_type: str = Field(...)
    temperature: float = 1.0
    max_new_tokens: int = 200
    stream: bool = True
    top_p: float = 1.0
    top_k: int = 50
    repetition_penalty: float = 1.0
    num_return_sequences: int = 1
    do_sample: bool = True
    chunk_delay: float = 0.0
    stop_sequences: List[str] = []
    image_file: Optional[UploadFile] = None
    source_language: Optional[str] = None
    target_language: Optional[str] = None
    context: Optional[str] = None
    audio_file: Optional[UploadFile] = None
    raw_input: Optional[Union[str, bytes]] = None
    masked_text: Optional[str] = None
    mask_image: Optional[UploadFile] = None
    low_res_image: Optional[UploadFile] = None

    @validator('task_type')
    def validate_task_type(cls, value):
        allowed_types = [
            "text",
            "image",
            "audio",
            "video",
            "classification",
            "translation",
            "question-answering",
            "speech-to-text",
            "text-to-speech",
            "image-segmentation",
            "feature-extraction",
            "token-classification",
            "fill-mask",
            "image-inpainting",
            "image-super-resolution",
            "object-detection",
            "image-captioning",
            "audio-transcription",
            "summarization",
        ]
        if value not in allowed_types:
            raise ValueError(f"Invalid task_type. Allowed types are: {allowed_types}")
        return value

    @root_validator(pre=True)
    def check_input(cls, values):
        task_type = values.get("task_type")
        if task_type == "text" and values.get("input_text") is None:
            raise ValueError("input_text is required for text generation.")
        elif task_type == "speech-to-text" and values.get("audio_file") is None:
            raise ValueError("audio_file is required for speech-to-text.")
        elif task_type == "classification" and values.get("image_file") is None:
            raise ValueError("image_file is required for image classification.")
        elif task_type == "image-segmentation" and values.get("image_file") is None:
            raise ValueError("image_file is required for image segmentation.")
        elif task_type == "feature-extraction" and values.get("raw_input") is None:
            raise ValueError("raw_input is required for feature extraction.")
        elif task_type == "fill-mask" and values.get("masked_text") is None:
            raise ValueError("masked_text is required for fill-mask.")
        elif task_type == "image-inpainting" and (values.get("image_file") is None or values.get("mask_image") is None):
            raise ValueError("image_file and mask_image are required for image inpainting.")
        elif task_type == "image-super-resolution" and values.get("low_res_image") is None:
            raise ValueError("low_res_image is required for image super-resolution.")
        return values


class S3ModelLoader:
    def __init__(self, bucket_name, aws_access_key_id, aws_secret_access_key, aws_region):
        self.bucket_name = bucket_name
        self.s3 = boto3.client(
            's3',
            aws_access_key_id=aws_access_key_id,
            aws_secret_access_key=aws_secret_access_key,
            region_name=aws_region
        )

    def _get_s3_uri(self, model_name):
        return f"{self.bucket_name}/{model_name.replace('/', '-')}"

    def load_model_and_tokenizer(self, model_name, task_type):
        s3_uri = self._get_s3_uri(model_name)
        try:
            self.s3.head_object(Bucket=self.bucket_name, Key=f'{s3_uri}/config.json')
        except ClientError as e:
            if e.response['Error']['Code'] == '404':
                with tempfile.TemporaryDirectory() as tmpdir:
                    model_path = snapshot_download(model_name, token=HUGGINGFACE_HUB_TOKEN, cache_dir=tmpdir)
                    self._upload_model_to_s3(model_path, s3_uri)
            else:
                raise HTTPException(status_code=500, detail=f"Error accessing S3: {e}")
        return self._load_from_s3(s3_uri, task_type)

    def _upload_model_to_s3(self, model_path, s3_uri):
        for root, _, files in os.walk(model_path):
            for file in files:
                local_path = os.path.join(root, file)
                s3_path = os.path.join(s3_uri, os.path.relpath(local_path, model_path))
                self.s3.upload_file(local_path, self.bucket_name, s3_path)

    def _load_from_s3(self, s3_uri, task_type):
        with tempfile.TemporaryDirectory() as tmpdir:
            model_path = os.path.join(tmpdir, s3_uri)
            os.makedirs(model_path, exist_ok=True)
            self.s3.download_file(self.bucket_name, f"{s3_uri}/config.json", os.path.join(model_path, "config.json"))
            if task_type == "text":
                model = AutoModelForCausalLM.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                if tokenizer.eos_token_id is None:
                    tokenizer.eos_token_id = tokenizer.pad_token_id
                return {"model": model, "tokenizer": tokenizer, "pad_token_id": tokenizer.pad_token_id, "eos_token_id": tokenizer.eos_token_id}
            elif task_type in ["image", "audio", "video"]:
                processor = AutoProcessor.from_pretrained(model_path)
                pipeline_function = pipeline(task_type, model=model_path, device=0 if torch.cuda.is_available() else -1, processor=processor)
                return {"pipeline": pipeline_function}
            elif task_type == "classification":
                model = AutoModelForImageClassification.from_pretrained(model_path)
                processor = AutoProcessor.from_pretrained(model_path)
                return {"model": model, "processor": processor}
            elif task_type == "translation":
                model = AutoModelForSeq2SeqLM.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                return {"model": model, "tokenizer": tokenizer}
            elif task_type == "question-answering":
                model = AutoModelForQuestionAnswering.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                return {"model": model, "tokenizer": tokenizer}
            elif task_type == "speech-to-text":
                model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "text-to-speech":
                model = pipeline("text-to-speech", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "image-segmentation":
                model = pipeline("image-segmentation", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "feature-extraction":
                feature_extractor = AutoFeatureExtractor.from_pretrained(model_path)
                return {"feature_extractor": feature_extractor}
            elif task_type == "token-classification":
                model = AutoModelForTokenClassification.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                return {"model": model, "tokenizer": tokenizer}
            elif task_type == "fill-mask":
                model = AutoModelForMaskedLM.from_pretrained(model_path)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                return {"model": model, "tokenizer": tokenizer}
            elif task_type == "image-inpainting":
                model = pipeline("image-inpainting", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "image-super-resolution":
                model = pipeline("image-super-resolution", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "object-detection":
                model = pipeline("object-detection", model=model_path, device=0 if torch.cuda.is_available() else -1)
                image_processor = AutoImageProcessor.from_pretrained(model_path)
                return {"pipeline": model, "image_processor": image_processor}
            elif task_type == "image-captioning":
                model = pipeline("image-captioning", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "audio-transcription":
                model = pipeline("automatic-speech-recognition", model=model_path, device=0 if torch.cuda.is_available() else -1)
                return {"pipeline": model}
            elif task_type == "summarization":
                model = pipeline("summarization", model=model_path, device=0 if torch.cuda.is_available() else -1)
                tokenizer = AutoTokenizer.from_pretrained(model_path)
                return {"model": model, "tokenizer": tokenizer}
            else:
                raise ValueError("Unsupported task type")

async def stream_text(model, tokenizer, input_text, generation_config, stop_sequences, device, chunk_delay):
    try:
        encoded_input = tokenizer(input_text, return_tensors="pt", truncation=True).to(device)
        input_length = encoded_input["input_ids"].shape[1]
        max_length = model.config.max_length
        remaining_tokens = max_length - input_length
        if remaining_tokens <= 0:
            yield ""
        generation_config.max_new_tokens = min(remaining_tokens, generation_config.max_new_tokens)
        def stop_criteria(input_ids, scores):
            decoded_output = tokenizer.decode(input_ids[0][-1], skip_special_tokens=True)
            return decoded_output in stop_sequences
        stopping_criteria = StoppingCriteriaList([stop_criteria])
        outputs = model.generate(
            **encoded_input,
            do_sample=generation_config.do_sample,
            max_new_tokens=generation_config.max_new_tokens,
            temperature=generation_config.temperature,
            top_p=generation_config.top_p,
            top_k=generation_config.top_k,
            repetition_penalty=generation_config.repetition_penalty,
            num_return_sequences=generation_config.num_return_sequences,
            stopping_criteria=stopping_criteria,
            output_scores=True,
            return_dict_in_generate=True
        )
        for output in outputs.sequences:
            for token_id in output:
                token = tokenizer.decode(token_id, skip_special_tokens=True)
                yield token
    except Exception as e:
        yield f"Error during text generation: {e}"


model_loader = S3ModelLoader(S3_BUCKET_NAME, AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY, AWS_REGION)

def get_model_data(request: GenerateRequest):
    return model_loader.load_model_and_tokenizer(request.model_id, request.task_type)

async def verify_api_key(api_key: str = Depends(api_key_header)):
    if api_key != API_KEY:
        raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Invalid API Key")

@app.post("/generate", dependencies=[Depends(verify_api_key)])
async def generate(request: GenerateRequest, background_tasks: BackgroundTasks, model_data=Depends(get_model_data)):
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"
        if request.task_type == "text":
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            generation_config = GenerationConfig(
                temperature=request.temperature,
                max_new_tokens=request.max_new_tokens,
                top_p=request.top_p,
                top_k=request.top_k,
                repetition_penalty=request.repetition_penalty,
                do_sample=request.do_sample,
                num_return_sequences=request.num_return_sequences,
            )
            return StreamingResponse(stream_text(model, tokenizer, request.input_text, generation_config, request.stop_sequences, device, request.chunk_delay), media_type="text/plain")
        elif request.task_type in ["image", "audio", "video"]:
            pipeline_func = model_data["pipeline"]
            try:
                result = pipeline_func(request.input_text)
                if request.task_type == "image":
                    image = result[0]
                    img_byte_arr = BytesIO()
                    image.save(img_byte_arr, format="PNG")
                    img_byte_arr.seek(0)
                    return StreamingResponse(img_byte_arr, media_type="image/png")
                elif request.task_type == "audio":
                    audio = result[0]
                    audio_byte_arr = BytesIO()
                    audio.save(audio_byte_arr, format="wav")
                    audio_byte_arr.seek(0)
                    return StreamingResponse(audio_byte_arr, media_type="audio/wav")
                elif request.task_type == "video":
                    video = result[0]
                    video_byte_arr = BytesIO()
                    video.save(video_byte_arr, format="mp4")
                    video_byte_arr.seek(0)
                    return StreamingResponse(video_byte_arr, media_type="video/mp4")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error processing {request.task_type}: {e}")
        elif request.task_type == "classification":
            if request.image_file is None:
                raise HTTPException(status_code=400, detail="Image file is required for classification.")
            contents = await request.image_file.read()
            image = Image.open(BytesIO(contents)).convert("RGB")
            model = model_data["model"].to(device)
            processor = model_data["processor"]
            inputs = processor(images=image, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = model(**inputs)
            predicted_class_idx = outputs.logits.argmax().item()
            predicted_class = model.config.id2label[predicted_class_idx]
            return JSONResponse({"predicted_class": predicted_class})
        elif request.task_type == "translation":
            if request.source_language is None or request.target_language is None:
                raise HTTPException(status_code=400, detail="Source and target languages are required for translation.")
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            inputs = tokenizer(request.input_text, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = model.generate(**inputs)
            translation = tokenizer.decode(outputs[0], skip_special_tokens=True)
            return JSONResponse({"translation": translation})
        elif request.task_type == "question-answering":
            if request.context is None:
                raise HTTPException(status_code=400, detail="Context is required for question answering.")
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            inputs = tokenizer(question=request.input_text, context=request.context, return_tensors="pt").to(device)
            with torch.no_grad():
                outputs = model(**inputs)
            answer_start = torch.argmax(outputs.start_logits)
            answer_end = torch.argmax(outputs.end_logits) + 1
            answer = tokenizer.convert_tokens_to_string(tokenizer.convert_ids_to_tokens(inputs["input_ids"][0][answer_start:answer_end]))
            return JSONResponse({"answer": answer})
        elif request.task_type == "speech-to-text":
            if request.audio_file is None:
                raise HTTPException(status_code=400, detail="Audio file is required for speech-to-text.")
            contents = await request.audio_file.read()
            pipeline_func = model_data["pipeline"]
            try:
                transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"]
                return JSONResponse({"transcription": transcription})
            except Exception as e:
                logger.exception(f"Error during speech-to-text: {e}")
                raise HTTPException(status_code=500, detail=f"Error during speech-to-text: {str(e)}") from e
        elif request.task_type == "text-to-speech":
            if not request.input_text:
                raise HTTPException(status_code=400, detail="Input text is required for text-to-speech.")
            pipeline_func = model_data["pipeline"]
            try:
                audio = pipeline_func(request.input_text)[0]
                file_path = os.path.join(TEMP_DIR, f"{uuid.uuid4()}.wav")
                audio.save(file_path)
                background_tasks.add_task(os.remove, file_path)
                return FileResponse(file_path, media_type="audio/wav")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during text-to-speech: {str(e)}")
        elif request.task_type == "image-segmentation":
            if request.image_file is None:
                raise HTTPException(status_code=400, detail="Image file is required for image segmentation.")
            contents = await request.image_file.read()
            image = Image.open(BytesIO(contents)).convert("RGB")
            pipeline_func = model_data["pipeline"]
            try:
                result = pipeline_func(image)
                mask = result[0]['mask']
                mask_byte_arr = BytesIO()
                mask.save(mask_byte_arr, format="PNG")
                mask_byte_arr.seek(0)
                return StreamingResponse(mask_byte_arr, media_type="image/png")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during image segmentation: {e}")
        elif request.task_type == "feature-extraction":
            if request.raw_input is None:
                raise HTTPException(status_code=400, detail="raw_input is required for feature extraction.")
            feature_extractor = model_data["feature_extractor"]
            try:
                if isinstance(request.raw_input, str):
                    inputs = feature_extractor(text=request.raw_input, return_tensors="pt")
                elif isinstance(request.raw_input, bytes):
                    image = Image.open(BytesIO(request.raw_input)).convert("RGB")
                    inputs = feature_extractor(images=image, return_tensors="pt")
                else:
                    raise ValueError("Unsupported raw_input type.")
                features = inputs.pixel_values
                return JSONResponse({"features": features.tolist()})
            except Exception as fe:
                raise HTTPException(status_code=400, detail=f"Error during feature extraction: {fe}")
        elif request.task_type == "token-classification":
            if request.input_text is None:
                raise HTTPException(status_code=400, detail="Input text is required for token classification.")
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            inputs = tokenizer(request.input_text, return_tensors="pt", padding=True, truncation=True)
            with torch.no_grad():
                outputs = model(**inputs)
            predictions = outputs.logits.argmax(dim=-1)
            predicted_labels = [model.config.id2label[label_id] for label_id in predictions[0].tolist()]
            return JSONResponse({"predicted_labels": predicted_labels})
        elif request.task_type == "fill-mask":
            if request.masked_text is None:
                raise HTTPException(status_code=400, detail="masked_text is required for fill-mask.")
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            inputs = tokenizer(request.masked_text, return_tensors="pt")
            with torch.no_grad():
                outputs = model(**inputs)
            logits = outputs.logits
            masked_index = torch.where(inputs.input_ids == tokenizer.mask_token_id)[1]
            predicted_token_id = torch.argmax(logits[0, masked_index])
            predicted_token = tokenizer.decode(predicted_token_id)
            return JSONResponse({"predicted_token": predicted_token})
        elif request.task_type == "image-inpainting":
            if request.image_file is None or request.mask_image is None:
                raise HTTPException(status_code=400, detail="image_file and mask_image are required for image inpainting.")
            image_contents = await request.image_file.read()
            mask_contents = await request.mask_image.read()
            image = Image.open(BytesIO(image_contents)).convert("RGB")
            mask = Image.open(BytesIO(mask_contents)).convert("L")
            pipeline_func = model_data["pipeline"]
            try:
                result = pipeline_func(image, mask)
                inpainted_image = result[0]
                img_byte_arr = BytesIO()
                inpainted_image.save(img_byte_arr, format="PNG")
                img_byte_arr.seek(0)
                return StreamingResponse(img_byte_arr, media_type="image/png")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during image inpainting: {e}")
        elif request.task_type == "image-super-resolution":
            if request.low_res_image is None:
                raise HTTPException(status_code=400, detail="low_res_image is required for image super-resolution.")
            contents = await request.low_res_image.read()
            image = Image.open(BytesIO(contents)).convert("RGB")
            pipeline_func = model_data["pipeline"]
            try:
                result = pipeline_func(image)
                upscaled_image = result[0]
                img_byte_arr = BytesIO()
                upscaled_image.save(img_byte_arr, format="PNG")
                img_byte_arr.seek(0)
                return StreamingResponse(img_byte_arr, media_type="image/png")
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during image super-resolution: {e}")
        elif request.task_type == "object-detection":
            if request.image_file is None:
                raise HTTPException(status_code=400, detail="Image file is required for object detection.")
            contents = await request.image_file.read()
            image = Image.open(BytesIO(contents)).convert("RGB")
            pipeline_func = model_data["pipeline"]
            image_processor = model_data["image_processor"]
            inputs = image_processor(images=image, return_tensors="pt")
            with torch.no_grad():
                try:
                    outputs = pipeline_func(image)
                    detections = outputs
                    return JSONResponse({"detections": detections})
                except Exception as e:
                    raise HTTPException(status_code=500, detail=f"Error during object detection: {e}")
        elif request.task_type == "image-captioning":
            if request.image_file is None:
                raise HTTPException(status_code=400, detail="Image file is required for image captioning.")
            contents = await request.image_file.read()
            image = Image.open(BytesIO(contents)).convert("RGB")
            pipeline_func = model_data["pipeline"]
            try:
                caption = pipeline_func(image)[0]['generated_text']
                return JSONResponse({"caption": caption})
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during image captioning: {e}")
        elif request.task_type == "audio-transcription":
            if request.audio_file is None:
                raise HTTPException(status_code=400, detail="Audio file is required for audio transcription.")
            contents = await request.audio_file.read()
            pipeline_func = model_data["pipeline"]
            try:
                transcription = pipeline_func(contents, sampling_rate=16000)[0]["text"]
                return JSONResponse({"transcription": transcription})
            except Exception as e:
                raise HTTPException(status_code=500, detail=f"Error during audio transcription: {str(e)}")
        elif request.task_type == "summarization":
            if request.input_text is None:
                raise HTTPException(status_code=400, detail="Input text is required for summarization.")
            model = model_data["model"].to(device)
            tokenizer = model_data["tokenizer"]
            inputs = tokenizer(request.input_text, return_tensors="pt", truncation=True, max_length=512)
            with torch.no_grad():
                try:
                    outputs = model.generate(**inputs)
                    summary = tokenizer.decode(outputs[0], skip_special_tokens=True)
                    return JSONResponse({"summary": summary})
                except Exception as e:
                    raise HTTPException(status_code=500, detail=f"Error during summarization: {e}")
        else:
            raise HTTPException(status_code=500, detail=f"Unsupported task type")
    except Exception as e:
        logger.exception(f"Internal server error: {str(e)}")
        raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")


@app.get("/health")
async def health_check():
    return {"status": "healthy"}

class Token(BaseModel):
    access_token: str
    token_type: str

async def get_db():
    async with asyncpg.create_pool(DATABASE_URL) as pool:
        async with pool.acquire() as conn:
            yield conn

async def authenticate_user(username, password, conn):
    row = await conn.fetchrow("SELECT * FROM users WHERE username = $1", username)
    if row is not None and pwd_context.verify(password, row["hashed_password"]):
        return {"username": username}
    return None

@app.post("/token", response_model=Token)
async def login_for_access_token(form_data: OAuth2PasswordRequestForm = Depends(), conn = Depends(get_db)):
    user = await authenticate_user(form_data.username, form_data.password, conn)
    if not user:
        raise HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Incorrect username or password", headers={"WWW-Authenticate": "Bearer"})
    access_token_expires = timedelta(minutes=ACCESS_TOKEN_EXPIRE_MINUTES)
    access_token = create_access_token(data={"sub": user["username"]}, expires_delta=access_token_expires)
    return {"access_token": access_token, "token_type": "bearer"}


async def get_current_user(token: str = Depends(oauth2_scheme), conn = Depends(get_db)):
    credentials_exception = HTTPException(status_code=status.HTTP_401_UNAUTHORIZED, detail="Could not validate credentials", headers={"WWW-Authenticate": "Bearer"})
    try:
        payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
        username: str = payload.get("sub")
        if username is None:
            raise credentials_exception
        user = await conn.fetchrow("SELECT * FROM users WHERE username = $1", username)
        if user is None:
            raise credentials_exception
        return username
    except JWTError:
        raise credentials_exception

@app.post("/register", response_model=User, status_code=status.HTTP_201_CREATED)
async def create_user(user: User, conn = Depends(get_db)):
    hashed_password = pwd_context.hash(user.password)
    try:
        await conn.execute("INSERT INTO users (username, email, hashed_password) VALUES ($1, $2, $3)", user.username, user.email, hashed_password)
        return user
    except asyncpg.exceptions.UniqueViolationError:
        raise HTTPException(status_code=400, detail="Username or email already exists")


@app.put("/users/{username}", response_model=User, dependencies=[Depends(get_current_user)])
async def update_user_data(username: str, user: User, conn = Depends(get_db)):
    hashed_password = pwd_context.hash(user.password)
    try:
        await conn.execute("UPDATE users SET email = $1, hashed_password = $2 WHERE username = $3", user.email, hashed_password, username)
        return user
    except Exception as e:
        logger.error(f"Error updating user: {e}")
        raise HTTPException(status_code=500, detail="Error updating user.")


@app.delete("/users/{username}", dependencies=[Depends(get_current_user)])
async def delete_user_account(username: str, conn = Depends(get_db)):
    try:
        await conn.execute("DELETE FROM users WHERE username = $1", username)
        return JSONResponse({"message": "User deleted successfully."}, status_code=200)
    except Exception as e:
        logger.error(f"Error deleting user: {e}")
        raise HTTPException(status_code=500, detail="Error deleting user.")


@app.get("/users", dependencies=[Depends(get_current_user)])
async def get_all_users_route(conn = Depends(get_db)):
    rows = await conn.fetch("SELECT username, email FROM users")
    return [{"username": row["username"], "email": row["email"]} for row in rows]


@app.get("/users/me", dependencies=[Depends(get_current_user)])  # Requires authentication
async def read_users_me(current_user: str = Depends(get_current_user), conn=Depends(get_db)):
    user = await conn.fetchrow("SELECT username, email FROM users WHERE username = $1", current_user)
    if user:
        return {"username": user["username"], "email": user["email"]}
    raise HTTPException(status_code=404, detail="User not found")


@app.exception_handler(RequestValidationError)
async def validation_exception_handler(request: Request, exc: RequestValidationError):
    return JSONResponse(
        status_code=status.HTTP_422_UNPROCESSABLE_ENTITY,
        content=json.dumps({"detail": exc.errors(), "body": exc.body}),
    )


def create_access_token(data: Dict[str, Any], expires_delta: timedelta = None):
    to_encode = data.copy()
    if expires_delta:
        expire = datetime.utcnow() + expires_delta
    else:
        expire = datetime.utcnow() + timedelta(minutes=15)
    to_encode.update({"exp": expire})
    encoded_jwt = jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
    return encoded_jwt


if __name__ == "__main__":
    uvicorn.run(app, host="0.0.0.0", port=7860)