aws_test / app.py.bkk
Hjgugugjhuhjggg's picture
Rename app.py to app.py.bkk
5618c19 verified
raw
history blame
9.09 kB
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
import asyncio
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")
MAX_TOKENS = 1024
s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
app = FastAPI()
class S3DirectStream:
def __init__(self, bucket_name):
self.s3_client = boto3.client(
's3',
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
region_name=AWS_REGION
)
self.bucket_name = bucket_name
async def stream_from_s3(self, key):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._stream_from_s3, key)
def _stream_from_s3(self, key):
try:
response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
return response['Body']
except self.s3_client.exceptions.NoSuchKey:
raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")
async def get_model_file_parts(self, model_name):
loop = asyncio.get_event_loop()
return await loop.run_in_executor(None, self._get_model_file_parts, model_name)
def _get_model_file_parts(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
return model_files
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")
async def load_model_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
model_files = await self.get_model_file_parts(model_name)
if not model_files:
await self.download_and_upload_to_s3(model_name)
config_stream = await self.stream_from_s3(f"{model_name}/config.json")
config_data = config_stream.read()
if not config_data:
raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_name}/config.json está vacío o no se pudo leer.")
config_text = config_data.decode("utf-8")
config_json = json.loads(config_text)
model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False)
return model
except HTTPException as e:
raise e
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")
async def load_tokenizer_from_s3(self, model_name):
try:
model_name = model_name.replace("/", "-").lower()
tokenizer_stream = await self.stream_from_s3(f"{model_name}/tokenizer.json")
tokenizer_data = tokenizer_stream.read().decode("utf-8")
tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
return tokenizer
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")
async def create_s3_folders(self, s3_key):
try:
folder_keys = s3_key.split('-')
for i in range(1, len(folder_keys)):
folder_key = '-'.join(folder_keys[:i]) + '/'
if not await self.file_exists_in_s3(folder_key):
logger.info(f"Creando carpeta en S3: {folder_key}")
self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")
async def file_exists_in_s3(self, s3_key):
try:
self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
return True
except self.s3_client.exceptions.ClientError:
return False
async def download_and_upload_to_s3(self, model_name, force_download=False):
try:
if force_download:
logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
model_name = model_name.replace("/", "-").lower()
if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
await self.create_s3_folders(f"{model_name}/")
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
with open(config_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
with open(tokenizer_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
else:
logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")
async def resume_download(self, model_name):
try:
logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.")
config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
if not await self.file_exists_in_s3(f"{model_name}/config.json"):
with open(config_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)
if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
with open(tokenizer_file, "rb") as file:
self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga o cargar archivos desde Hugging Face a S3: {e}")
def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
tokens = tokenizer.encode(text)
chunks = []
for i in range(0, len(tokens), max_tokens):
chunk = tokens[i:i+max_tokens]
chunks.append(tokenizer.decode(chunk))
return chunks
def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
generated_text = ""
while len(input_text) > 0:
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens)
for chunk in chunks:
generated_text += model.generate(chunk)
return generated_text
@app.post("/generate")
async def generate_text(model_name: str = Query(...), input_text: str = Query(...)):
try:
model_loader = S3DirectStream(S3_BUCKET_NAME)
model = await model_loader.load_model_from_s3(model_name)
tokenizer = await model_loader.load_tokenizer_from_s3(model_name)
chunks = split_text_by_tokens(input_text, tokenizer, max_tokens=MAX_TOKENS)
generated_text = continue_generation(input_text, model, tokenizer)
return {"generated_text": generated_text}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=8000)