File size: 9,092 Bytes
410390c
cb81674
590a28e
 
5618c19
590a28e
5618c19
f9acdf3
590a28e
00a3421
cb81674
 
 
 
 
 
 
410390c
 
 
0e63678
3e67bfd
631e498
590a28e
 
410390c
 
 
 
 
 
 
 
 
cb81674
410390c
cb81674
 
 
 
 
 
410390c
 
590a28e
 
 
9214e9b
590a28e
 
 
 
 
 
9214e9b
590a28e
f9acdf3
590a28e
 
 
 
 
f9acdf3
5618c19
 
 
590a28e
 
 
c1d4983
cb81674
 
5618c19
 
cb81674
 
5618c19
590a28e
5618c19
590a28e
cb81674
590a28e
5618c19
cb81674
590a28e
 
cb81674
5618c19
cb81674
 
 
 
 
590a28e
cb81674
 
 
5618c19
 
590a28e
 
5618c19
cb81674
 
590a28e
c1d4983
590a28e
c1d4983
5618c19
590a28e
5618c19
590a28e
 
 
 
cb81674
590a28e
c1d4983
590a28e
cb81674
590a28e
 
 
 
631e498
5618c19
590a28e
5618c19
 
 
 
 
 
 
 
 
 
590a28e
5618c19
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
590a28e
5618c19
590a28e
5618c19
590a28e
5618c19
590a28e
 
5618c19
590a28e
 
 
 
 
 
 
 
 
 
 
 
5618c19
 
 
590a28e
 
5618c19
 
410390c
5618c19
 
 
cb81674
5618c19
590a28e
5618c19
 
 
590a28e
0e63678
5618c19
9214e9b
410390c
0e63678
5618c19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import json
import logging
import boto3
from fastapi import FastAPI, HTTPException, Query
from fastapi.responses import JSONResponse
from transformers import AutoModelForCausalLM, AutoTokenizer
from huggingface_hub import hf_hub_download
import asyncio

logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
console_handler.setFormatter(formatter)
logger.addHandler(console_handler)

AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID")
AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY")
AWS_REGION = os.getenv("AWS_REGION")
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME")
HUGGINGFACE_HUB_TOKEN = os.getenv("HUGGINGFACE_HUB_TOKEN")

MAX_TOKENS = 1024

s3_client = boto3.client(
    's3',
    aws_access_key_id=AWS_ACCESS_KEY_ID,
    aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
    region_name=AWS_REGION
)

app = FastAPI()

class S3DirectStream:
    def __init__(self, bucket_name):
        self.s3_client = boto3.client(
            's3',
            aws_access_key_id=AWS_ACCESS_KEY_ID,
            aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
            region_name=AWS_REGION
        )
        self.bucket_name = bucket_name

    async def stream_from_s3(self, key):
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._stream_from_s3, key)

    def _stream_from_s3(self, key):
        try:
            response = self.s3_client.get_object(Bucket=self.bucket_name, Key=key)
            return response['Body']
        except self.s3_client.exceptions.NoSuchKey:
            raise HTTPException(status_code=404, detail=f"El archivo {key} no existe en el bucket S3.")
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al descargar {key} desde S3: {str(e)}")

    async def get_model_file_parts(self, model_name):
        loop = asyncio.get_event_loop()
        return await loop.run_in_executor(None, self._get_model_file_parts, model_name)

    def _get_model_file_parts(self, model_name):
        try:
            model_name = model_name.replace("/", "-").lower()
            files = self.s3_client.list_objects_v2(Bucket=self.bucket_name, Prefix=model_name)
            model_files = [obj['Key'] for obj in files.get('Contents', []) if model_name in obj['Key']]
            return model_files
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al obtener archivos del modelo {model_name} desde S3: {e}")

    async def load_model_from_s3(self, model_name):
        try:
            model_name = model_name.replace("/", "-").lower()
            model_files = await self.get_model_file_parts(model_name)

            if not model_files:
                await self.download_and_upload_to_s3(model_name)

            config_stream = await self.stream_from_s3(f"{model_name}/config.json")
            config_data = config_stream.read()

            if not config_data:
                raise HTTPException(status_code=500, detail=f"El archivo de configuración {model_name}/config.json está vacío o no se pudo leer.")
            
            config_text = config_data.decode("utf-8")
            config_json = json.loads(config_text)

            model = AutoModelForCausalLM.from_pretrained(f"s3://{self.bucket_name}/{model_name}", config=config_json, from_tf=False)
            return model

        except HTTPException as e:
            raise e
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al cargar el modelo desde S3: {e}")

    async def load_tokenizer_from_s3(self, model_name):
        try:
            model_name = model_name.replace("/", "-").lower()
            tokenizer_stream = await self.stream_from_s3(f"{model_name}/tokenizer.json")
            tokenizer_data = tokenizer_stream.read().decode("utf-8")

            tokenizer = AutoTokenizer.from_pretrained(f"s3://{self.bucket_name}/{model_name}")
            return tokenizer
        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al cargar el tokenizer desde S3: {e}")

    async def create_s3_folders(self, s3_key):
        try:
            folder_keys = s3_key.split('-')
            for i in range(1, len(folder_keys)):
                folder_key = '-'.join(folder_keys[:i]) + '/'
                if not await self.file_exists_in_s3(folder_key):
                    logger.info(f"Creando carpeta en S3: {folder_key}")
                    self.s3_client.put_object(Bucket=self.bucket_name, Key=folder_key, Body='')

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al crear carpetas en S3: {e}")

    async def file_exists_in_s3(self, s3_key):
        try:
            self.s3_client.head_object(Bucket=self.bucket_name, Key=s3_key)
            return True
        except self.s3_client.exceptions.ClientError:
            return False

    async def download_and_upload_to_s3(self, model_name, force_download=False):
        try:
            if force_download:
                logger.info(f"Forzando la descarga del modelo {model_name} y la carga a S3.")
            
            model_name = model_name.replace("/", "-").lower()

            if not await self.file_exists_in_s3(f"{model_name}/config.json") or not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
                config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)
                tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, force_download=force_download)

                await self.create_s3_folders(f"{model_name}/")

                if not await self.file_exists_in_s3(f"{model_name}/config.json"):
                    with open(config_file, "rb") as file:
                        self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)

                if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
                    with open(tokenizer_file, "rb") as file:
                        self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)
            else:
                logger.info(f"Los archivos del modelo {model_name} ya existen en S3. No es necesario descargarlos de nuevo.")

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al descargar o cargar archivos desde Hugging Face a S3: {e}")

    async def resume_download(self, model_name):
        try:
            logger.info(f"Reanudando la descarga del modelo {model_name} desde Hugging Face.")
            config_file = hf_hub_download(repo_id=model_name, filename="config.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)
            tokenizer_file = hf_hub_download(repo_id=model_name, filename="tokenizer.json", token=HUGGINGFACE_HUB_TOKEN, resume_download=True)

            if not await self.file_exists_in_s3(f"{model_name}/config.json"):
                with open(config_file, "rb") as file:
                    self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/config.json", Body=file)

            if not await self.file_exists_in_s3(f"{model_name}/tokenizer.json"):
                with open(tokenizer_file, "rb") as file:
                    self.s3_client.put_object(Bucket=self.bucket_name, Key=f"{model_name}/tokenizer.json", Body=file)

        except Exception as e:
            raise HTTPException(status_code=500, detail=f"Error al reanudar la descarga o cargar archivos desde Hugging Face a S3: {e}")

def split_text_by_tokens(text, tokenizer, max_tokens=MAX_TOKENS):
    tokens = tokenizer.encode(text)
    chunks = []
    for i in range(0, len(tokens), max_tokens):
        chunk = tokens[i:i+max_tokens]
        chunks.append(tokenizer.decode(chunk))
    return chunks

def continue_generation(input_text, model, tokenizer, max_tokens=MAX_TOKENS):
    generated_text = ""
    while len(input_text) > 0:
        chunks = split_text_by_tokens(input_text, tokenizer, max_tokens)
        for chunk in chunks:
            generated_text += model.generate(chunk)
    return generated_text

@app.post("/generate")
async def generate_text(model_name: str = Query(...), input_text: str = Query(...)):
    try:
        model_loader = S3DirectStream(S3_BUCKET_NAME)
        model = await model_loader.load_model_from_s3(model_name)
        tokenizer = await model_loader.load_tokenizer_from_s3(model_name)
        
        chunks = split_text_by_tokens(input_text, tokenizer, max_tokens=MAX_TOKENS)
        
        generated_text = continue_generation(input_text, model, tokenizer)
        
        return {"generated_text": generated_text}

    except Exception as e:
        raise HTTPException(status_code=500, detail=str(e))

if __name__ == "__main__":
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8000)