Ligeng-Zhu's picture
Add application file
cc7235c
raw
history blame
5.04 kB
import gradio as gr
import os, os.path as osp
import time
import glob
import cv2
from PIL import Image
import hashlib
import shutil
import os, sys, os.path as osp
import csv
import random
import json
from huggingface_hub import HfApi, repo_exists, file_exists
from huggingface_hub.hf_api import CommitOperationAdd
def calc_file_md5(fpath):
with open(fpath, "rb") as f:
file_hash = hashlib.md5()
while chunk := f.read(8192):
file_hash.update(chunk)
return file_hash.hexdigest()[:6]
finfo = [
json.load(open("f1/coyo25m-0-000000.tar.json")),
json.load(open("f2/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
json.load(open("f3/coyo25m-0-000000.tar.json")),
]
keys = list(finfo[0].keys())
api = HfApi()
def get_random_captino(k):
indexs = random.sample(list(range(5)), k=2)
output = []
idxs = []
for i in indexs:
if i == 4:
output.append(finfo[0][k]["orig_text"])
else:
output.append(finfo[i][k]["output"])
idxs.append(i)
return output, idxs
def load_image(idx):
k = keys[idx]
infos, indexs = get_random_captino(k)
return k, f"{k}", infos[0], infos[1], str(indexs)
def random_image(idx):
k = random.choice(keys)
index = keys.index(k)
infos, indexs = get_random_captino(k)
return k, index, f"{k}", infos[0], infos[1], str(indexs)
def save_labeling(url, cap1, cap2, labeler, indexs, preference="left"):
os.makedirs("flagged", exist_ok=True)
output_info = {
"cap1": cap1,
"cap2": cap2,
"preference": preference,
"indexs": indexs,
"labeler": labeler,
}
# print(url)
lid = (
labeler.replace(" ", "_").replace("@", "_").replace(".", "_").replace("/", "-")
)
output_path = osp.join(f"flagged", url.replace("/", "--") + f".{lid}.json")
with open(output_path, "w") as fp:
json.dump(output_info, fp, indent=2)
if "RUNNING_ON_SPACE" in os.environ:
if not api.repo_exists(
"Efficient-Large-Model/VILA-S-Human-Test", repo_type="dataset"
):
api.create_repo(
"Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
private=True,
)
operation = CommitOperationAdd(
path_or_fileobj=output_path,
path_in_repo=osp.basename(output_path),
)
print("uploading ", output_path)
commit_info = api.create_commit(
repo_id="Efficient-Large-Model/VILA-S-Human-Test",
repo_type="dataset",
operations=[
operation,
],
commit_message=f"update {output_path}",
)
output_path = commit_info
return output_path + "\n" + json.dumps(output_info, indent=2)
with gr.Blocks(
title="VILA Video Benchmark",
) as demo:
with gr.Row():
slider = gr.Slider(maximum=len(keys), label="Video Index", value=0)
with gr.Row():
with gr.Column(scale=4):
image_input = gr.Image(
label="Video Preview ",
height=360,
value="https://github.com/NVlabs/VILA/raw/main/demo_images/vila-logo.jpg",
)
with gr.Column(scale=1):
random_img = gr.Button(value="Random Image")
labeler = gr.Text(
value="placeholder",
label="Labeler ID (your name or email)",
interactive=True,
)
logging = gr.Markdown(label="Logging info")
with gr.Row():
btn_left = gr.Button("Left better")
btn_tie = gr.Button("tie")
btn_right = gr.Button("Right better")
with gr.Row():
vcap1 = gr.Textbox(label="Anoymous Caption 1")
vcap2 = gr.Textbox(label="Anoymous Caption 2")
cap_res = gr.Textbox(label="Caption Saving Results")
tmp_info = gr.Textbox(label="Temp Info", visible=False)
from functools import partial
btn_left.click(
partial(save_labeling, preference="left"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
btn_tie.click(
partial(save_labeling, preference="tie"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
btn_right.click(
partial(save_labeling, preference="right"),
inputs=[logging, vcap1, vcap2, labeler, tmp_info],
outputs=[cap_res],
)
slider.change(
load_image,
inputs=[slider],
outputs=[image_input, logging, vcap1, vcap2, tmp_info],
)
random_img.click(
random_image,
inputs=[random_img],
outputs=[image_input, slider, logging, vcap1, vcap2, tmp_info],
)
# btn_save.click(
# save_labeling,
# inputs=[video_path, _vtag, _vcap, vtag, vcap, uid],
# outputs=[
# cap_res,
# ],
# )
demo.queue()
if __name__ == "__main__":
demo.launch()