MERaLiON-AudioLLM / pages.py
YingxuHe's picture
Update pages.py
7234479 verified
raw
history blame
13 kB
import os
import base64
import numpy as np
from openai import APIConnectionError
import streamlit as st
import streamlit.components.v1 as components
from streamlit_mic_recorder import mic_recorder
from utils import load_model, generate_response, bytes_to_array, start_server, NoAudioException
general_instructions = [
"Please transcribe this speech.",
"Please summarise this speech."
]
def audio_llm():
with st.sidebar:
st.markdown("""<div class="sidebar-intro">
<p><strong>📌 Supported Tasks</strong>
<p>Automatic Speech Recognation</p>
<p>Speech Translation</p>
<p>Spoken Question Answering</p>
<p>Spoken Dialogue Summarization</p>
<p>Speech Instruction</p>
<p>Paralinguistics</p>
<br>
<p><strong>📎 Generation Config</strong>
</div>""", unsafe_allow_html=True)
st.slider(label='Temperature', min_value=0.0, max_value=2.0, value=0.7, key='temperature')
st.slider(label='Top P', min_value=0.0, max_value=1.0, value=1.0, key='top_p')
if st.sidebar.button('Clear History'):
st.session_state.update(messages=[],
on_upload=False,
on_record=False,
on_select=False,
audio_array=np.array([]))
if "server" not in st.session_state:
st.session_state.server = start_server()
if "client" not in st.session_state or 'model_name' not in st.session_state:
st.session_state.client, st.session_state.model_name = load_model()
if "audio_array" not in st.session_state:
st.session_state.audio_base64 = ''
st.session_state.audio_array = np.array([])
if "default_instruction" not in st.session_state:
st.session_state.default_instruction = []
st.markdown("<h1 style='text-align: center; color: black;'>MERaLiON-AudioLLM ChatBot 🤖</h1>", unsafe_allow_html=True)
st.markdown(
"""This demo is based on [MERaLiON-AudioLLM](https://huggingface.co/MERaLiON/MERaLiON-AudioLLM-Whisper-SEA-LION),
developed by I2R, A*STAR, in collaboration with AISG, Singapore.
It is tailored for Singapore’s multilingual and multicultural landscape."""
)
col1, col2, col3 = st.columns([4, 4, 1.2])
with col1:
audio_samples_w_instruct = {
'1_ASR_IMDA_PART1_ASR_v2_141' : ["Turn the spoken language into a text format.", "Please translate the content into Chinese."],
'7_ASR_IMDA_PART3_30_ASR_v2_2269': ["Need this talk written down, please."],
'17_ASR_IMDA_PART6_30_ASR_v2_1413': ["Record the spoken word in text form."],
'25_ST_COVOST2_ZH-CN_EN_ST_V2_4567': ["Please translate the given speech to English."],
'26_ST_COVOST2_EN_ZH-CN_ST_V2_5422': ["Please translate the given speech to Chinese."],
'30_SI_ALPACA-GPT4-AUDIO_SI_V2_1454': ["Please follow the instruction in the speech."],
'32_SQA_CN_COLLEDGE_ENTRANCE_ENGLISH_TEST_SQA_V2_572': ["What does the man think the woman should do at 4:00."],
'33_SQA_IMDA_PART3_30_SQA_V2_2310': ["Does Speaker2's wife cook for Speaker2 when they are at home."],
'34_SQA_IMDA_PART3_30_SQA_V2_3621': ["Does the phrase \"#gai-gai#\" have a meaning in Chinese or Hokkien language."],
'35_SQA_IMDA_PART3_30_SQA_V2_4062': ["What is the color of the vase mentioned in the dialogue."],
'36_DS_IMDA_PART4_30_DS_V2_849': ["Condense the dialogue into a concise summary highlighting major topics and conclusions."],
'39_Paralingual_IEMOCAP_ER_V2_91': ["Based on the speaker's speech patterns, what do you think they are feeling."],
'40_Paralingual_IEMOCAP_ER_V2_567': ["Based on the speaker's speech patterns, what do you think they are feeling."],
'42_Paralingual_IEMOCAP_GR_V2_320': ["Is it possible for you to identify whether the speaker in this recording is male or female."],
'43_Paralingual_IEMOCAP_GR_V2_129': ["Is it possible for you to identify whether the speaker in this recording is male or female."],
'45_Paralingual_IMDA_PART3_30_GR_V2_12312': ["So, who's speaking in the second part of the clip?", "So, who's speaking in the first part of the clip?"],
'47_Paralingual_IMDA_PART3_30_NR_V2_10479': ["Can you guess which ethnic group this person is from based on their accent."],
'49_Paralingual_MELD_ER_V2_676': ["What emotions do you think the speaker is expressing."],
'50_Paralingual_MELD_ER_V2_692': ["Based on the speaker's speech patterns, what do you think they are feeling."],
'51_Paralingual_VOXCELEB1_GR_V2_2148': ["May I know the gender of the speaker."],
'53_Paralingual_VOXCELEB1_NR_V2_2286': ["What's the nationality identity of the speaker."],
'55_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_2': ["What impact would the growth of the healthcare sector have on the country's economy in terms of employment and growth."],
'56_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_415': ["Based on the statement, can you summarize the speaker's position on the recent controversial issues in Singapore."],
'57_SQA_PUBLIC_SPEECH_SG_TEST_SQA_V2_460': ["How does the author respond to parents' worries about masks in schools."],
'2_ASR_IMDA_PART1_ASR_v2_2258': ["Turn the spoken language into a text format.", "Please translate the content into Chinese."],
'3_ASR_IMDA_PART1_ASR_v2_2265': ["Turn the spoken language into a text format."],
'4_ASR_IMDA_PART2_ASR_v2_999' : ["Translate the spoken words into text format."],
'5_ASR_IMDA_PART2_ASR_v2_2241': ["Translate the spoken words into text format."],
'6_ASR_IMDA_PART2_ASR_v2_3409': ["Translate the spoken words into text format."],
'8_ASR_IMDA_PART3_30_ASR_v2_1698': ["Need this talk written down, please."],
'9_ASR_IMDA_PART3_30_ASR_v2_2474': ["Need this talk written down, please."],
'11_ASR_IMDA_PART4_30_ASR_v2_3771': ["Write out the dialogue as text."],
'12_ASR_IMDA_PART4_30_ASR_v2_103' : ["Write out the dialogue as text."],
'10_ASR_IMDA_PART4_30_ASR_v2_1527': ["Write out the dialogue as text."],
'13_ASR_IMDA_PART5_30_ASR_v2_1446': ["Translate this vocal recording into a textual format."],
'14_ASR_IMDA_PART5_30_ASR_v2_2281': ["Translate this vocal recording into a textual format."],
'15_ASR_IMDA_PART5_30_ASR_v2_4388': ["Translate this vocal recording into a textual format."],
'16_ASR_IMDA_PART6_30_ASR_v2_576': ["Record the spoken word in text form."],
'18_ASR_IMDA_PART6_30_ASR_v2_2834': ["Record the spoken word in text form."],
'19_ASR_AIShell_zh_ASR_v2_5044': ["Transform the oral presentation into a text document."],
'20_ASR_LIBRISPEECH_CLEAN_ASR_V2_833': ["Please provide a written transcription of the speech."],
'27_ST_COVOST2_EN_ZH-CN_ST_V2_6697': ["Please translate the given speech to Chinese."],
'28_SI_ALPACA-GPT4-AUDIO_SI_V2_299': ["Please follow the instruction in the speech."],
'29_SI_ALPACA-GPT4-AUDIO_SI_V2_750': ["Please follow the instruction in the speech."],
}
audio_sample_names = [audio_sample_name for audio_sample_name in audio_samples_w_instruct.keys()]
st.markdown("**Select Audio From Examples:**")
sample_name = st.selectbox(
label="**Select Audio:**",
label_visibility="collapsed",
options=audio_sample_names,
index=None,
placeholder="Select an audio sample:",
on_change=lambda: st.session_state.update(on_select=True, messages=[]),
key='select')
if sample_name and st.session_state.on_select:
audio_bytes = open(f"audio_samples/{sample_name}.wav", "rb").read()
st.session_state.default_instruction = audio_samples_w_instruct[sample_name]
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col2:
st.markdown("or **Upload Audio:**")
uploaded_file = st.file_uploader(
label="**Upload Audio:**",
label_visibility="collapsed",
type=['wav', 'mp3'],
on_change=lambda: st.session_state.update(on_upload=True, messages=[]),
key='upload'
)
if uploaded_file and st.session_state.on_upload:
audio_bytes = uploaded_file.read()
st.session_state.default_instruction = general_instructions
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
with col3:
st.markdown("or **Record Audio:**")
recording = mic_recorder(
format="wav",
use_container_width=True,
callback=lambda: st.session_state.update(on_record=True, messages=[]),
key='record')
if recording and st.session_state.on_record:
audio_bytes = recording["bytes"]
st.session_state.default_instruction = general_instructions
st.session_state.audio_base64 = base64.b64encode(audio_bytes).decode('utf-8')
st.session_state.audio_array = bytes_to_array(audio_bytes)
st.markdown(
"""
<style>
.st-emotion-cache-1c7y2kd {
flex-direction: row-reverse;
text-align: right;
}
</style>
""",
unsafe_allow_html=True,
)
if "prompt" not in st.session_state:
st.session_state.prompt = ""
if 'disprompt' not in st.session_state:
st.session_state.disprompt = False
if "messages" not in st.session_state:
st.session_state.messages = []
if st.session_state.audio_array.size:
with st.chat_message("user"):
st.audio(st.session_state.audio_array, format="audio/wav", sample_rate=16000)
if st.session_state.audio_array.shape[0] / 16000 > 30.0:
st.warning("MERaLiON-AudioLLM can only process audio for up to 30 seconds. Audio longer than that will be truncated.")
st.session_state.update(on_upload=False, on_record=False, on_select=False)
for i, inst in enumerate(st.session_state.default_instruction):
st.button(
f"**Example Instruction {i+1}**: {inst}",
args=(inst,),
disabled=st.session_state.disprompt,
on_click=lambda p: st.session_state.update(disprompt=True, prompt=p)
)
for message in st.session_state.messages[-2:]:
with st.chat_message(message["role"]):
if message.get("error"):
st.error(message["error"])
for warning_msg in message.get("warnings", []):
st.warning(warning_msg)
if message.get("content"):
st.write(message["content"])
if prompt := st.chat_input(
placeholder="Type Your Instruction Here",
disabled=st.session_state.disprompt,
on_submit=lambda: st.session_state.update(disprompt=True)
):
st.session_state.prompt = prompt
if st.session_state.prompt:
with st.chat_message("user"):
st.write(st.session_state.prompt)
st.session_state.messages.append({"role": "user", "content": st.session_state.prompt})
with st.chat_message("assistant"):
response, error_msg, warnings = "", "", []
with st.spinner("Thinking..."):
try:
stream, warnings = generate_response(st.session_state.prompt)
for warning_msg in warnings:
st.warning(warning_msg)
response = st.write_stream(stream)
except NoAudioException:
error_msg = "Please specify audio first!"
except APIConnectionError:
error_msg = "Internet connection seems to be down. Please contact the administrator to restart the space."
except Exception as e:
error_msg = f"Caught Exception: {repr(e)}. Please contact the administrator."
st.session_state.messages.append({
"role": "assistant",
"error": error_msg,
"warnings": warnings,
"content": response
})
st.session_state.update(disprompt=False, prompt="")
st.rerun()