|
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM |
|
from peft import PeftModel, PeftConfig |
|
import gradio as gr |
|
|
|
|
|
repo_id = "Miguelpef/bart-base-lora-3DPrompt" |
|
|
|
|
|
peft_config = PeftConfig.from_pretrained(repo_id) |
|
|
|
|
|
model = AutoModelForSeq2SeqLM.from_pretrained(peft_config.base_model_name_or_path) |
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(repo_id) |
|
|
|
|
|
model = PeftModel.from_pretrained(model, repo_id) |
|
|
|
|
|
def generar_prompt_desde_objeto(objeto): |
|
prompt = objeto |
|
inputs = tokenizer(prompt, return_tensors='pt').to(model.device) |
|
outputs = model.generate(**inputs, max_length=100) |
|
prompt_generado = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
return prompt_generado |
|
|
|
|
|
iface = gr.Interface( |
|
fn=generar_prompt_desde_objeto, |
|
inputs=gr.Textbox(lines=2, placeholder="Enter object description here..."), |
|
outputs="text", |
|
title="3D Prompt Generator", |
|
description="Generates 3D prompts from object descriptions using a fine-tuned BART model.", |
|
) |
|
|
|
|
|
iface.launch() |