Spaces:
Sleeping
Sleeping
File size: 19,378 Bytes
ee89318 fc17498 7042fc3 cca57f2 6795bf0 fc17498 2590d8a fc17498 5cb7f33 cca57f2 ba52fb4 bf24bdd ffb922b 8576e15 ffb922b 7856036 ffb922b 7856036 ffb922b 7856036 c4a397e ffb922b 101017e 3003fc6 26b4729 e81c2f0 bf24bdd ffb922b 4c5033c 9753cc8 3003fc6 22b9a53 4c5bb95 26b4729 e81c2f0 c4a397e c910c88 c4a397e c910c88 101017e c910c88 e81c2f0 c910c88 e81c2f0 c910c88 e81c2f0 86b1100 ffb922b ee89318 ffb922b 101017e ffb922b 1dd930a c3deab7 ffb922b e81c2f0 ffb922b 1dd930a c3deab7 c4a397e c3deab7 c4a397e c3deab7 c4a397e c3deab7 1f5ff8e ffb922b 26b4729 101017e ffb922b e81c2f0 ffb922b e81c2f0 ffb922b c4a397e ffb922b e81c2f0 ffb922b c4a397e 101017e ffb922b c3deab7 c4a397e ffb922b c3deab7 ffb922b e81c2f0 ffb922b e81c2f0 ffb922b 23b8999 325a3cb 76d4008 ffb922b e81c2f0 ffb922b c4a397e ffb922b 70a6a1f ffb922b 35f6ab6 ffb922b e81c2f0 ffb922b 4c5bb95 ffb922b 5cb7f33 e81c2f0 5cb7f33 e81c2f0 5cb7f33 e81c2f0 ffb922b 5cb7f33 e81c2f0 5cb7f33 ffb922b 5cb7f33 e81c2f0 ffb922b 35f6ab6 e81c2f0 ffb922b e81c2f0 ffb922b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 |
import random
import streamlit as st
import re, secrets, os, ast,json
import pandas as pd
from huggingface_hub import login, InferenceClient
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import datetime
import wordcloud
import matplotlib.pyplot as plt
from pygwalker.api.streamlit import StreamlitRenderer
import plotly.express as px
st.set_page_config(layout="wide")
@st.cache_resource
def login_huggingface(token):
login(token=token)
login_huggingface(token=os.getenv("TOKEN"))
@st.cache_data
def load_pickle(file_path):
with open(file_path, 'rb') as file:
return pickle.load(file)
cv = load_pickle('cv.pkl')
vectors = load_pickle('vectors.pkl')
items_dict = pd.DataFrame.from_dict(load_pickle('items_dict.pkl'))
mode = st.toggle(label="MART")
if 'ind' not in st.session_state:
st.session_state.ind = []
def spinner(txt):return st.spinner(txt)
def columns(n):
return st.columns(n)
def text_area(txt,value,placeholder):
return st.text_area(txt,value=value,placeholder=placeholder)
def number_input(txt,min_value,max_value,value,step):return st.number_input(txt,min_value=min_value,max_value=max_value,value=value,step=step)
def button(txt,on_click,type,disabled=False,use_container_width=False,kwargs=None):
return st.button(label=txt,on_click=on_click,disabled=disabled,type=type,use_container_width=use_container_width,kwargs=kwargs)
def container(border,height):
return st.container(border=border,height=height)
def selectbox(txt,options,key=None):return st.selectbox(txt,options=options,key=key)
def expander(txt):return st.expander(txt)
@st.cache_resource(show_spinner=False)
def pygwalerapp(df):
return StreamlitRenderer(df)
def preprocess_text(text):
# Remove non-alphabet characters and extra spaces
text = re.sub(r'[^a-zA-Z\s]', '', text)
text = re.sub(r'\s+', ' ', text).strip()
return text.lower()
def get_recommendations(user_description, count_vectorizer, count_matrix):
user_description = preprocess_text(user_description)
user_vector = count_vectorizer.transform([user_description])
cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
similar_indices = cosine_similarities.argsort()[::-1]
return similar_indices[:5]
@st.fragment
def show_recipe(recipe):
with spinner("HANG TIGHT, RECIPE INCOMING..."):
name_and_dis = f'# {recipe["name"]}\n\n'
name_and_dis += f'{recipe["description"]}\n\n'
ingredients = '## Ingredients:\n'
instructions = '\n## Instructions:\n'
for instruction in recipe["instructions"]:
instructions += f"{instruction['step_number']}. {instruction['instruction']}\n"
st.write(name_and_dis)
col01, col02 = columns(2)
with col01:
cont = container(border=True, height=500)
with cont:
st.write(ingredients)
for j, i in enumerate(recipe["ingredients"]):
ind = get_recommendations(i['name'], cv, vectors)
st.session_state.ind.append(ind[:5].tolist())
selectbox(i['name'],
options=items_dict.iloc[ind][
"PRODUCT_NAME"].values,
key=f"selectbox_{j}_{i['name']}{random.random() * 100}")
with col02:
cont = container(border=True, height=500)
with cont:st.write(instructions)
# @st.fragment
def cooking():
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
if 'recipe' not in st.session_state:
st.session_state.recipe = None
if 'recipe_saved' not in st.session_state:
st.session_state.recipe_saved = None
if 'user_direction' not in st.session_state:
st.session_state.user_direction = None
if 'serving_size' not in st.session_state:
st.session_state.serving_size = 2
if 'selected_difficulty' not in st.session_state:
st.session_state.selected_difficulty = "Quick & Easy"
if 'exclusions' not in st.session_state:
st.session_state.exclusions = None
def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty):
if difficulty == "Quick & Easy":
prompt = (
f"Provide a 'Quick and Easy' recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"It should require as few ingredients as possible and should be ready in as little time as possible. "
f"The steps should be simple, and the ingredients should be commonly found in a household pantry. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Intermediate":
prompt = (
f"Provide a classic recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should offer a bit of a cooking challenge but should not require professional skills. "
f"The recipe should feature traditional ingredients and techniques that are authentic to its cuisine. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
elif difficulty == "Professional":
prompt = (
f"Provide a advanced recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
f"The recipe should push the boundaries of culinary arts, integrating unique ingredients, advanced cooking techniques, and innovative presentations. "
f"The recipe should be able to be served at a high-end restaurant or would impress at a gourmet food competition. "
f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
)
return prompt
def generate_recipe(user_inputs):
with spinner('Building the perfect recipe...'):
prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'],
user_inputs['serving_size'], user_inputs['difficulty'])
functions = [
{
"name": "provide_recipe",
"description": "Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty",
"parameters": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "A creative name for the recipe"
},
"description": {
"type": "string",
"description": "a brief one-sentence description of the provided recipe"
},
"ingredients": {
"type": "array",
"items": {
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Quantity and name of the ingredient"
}
}
}
},
"instructions": {
"type": "array",
"items": {
"type": "object",
"properties": {
"step_number": {
"type": "number",
"description": "The sequence number of this step"
},
"instruction": {
"type": "string",
"description": "Detailed description of what to do in this step"
}
}
}
}
},
"required": [
"name",
"description",
"ingredients",
"instructions"
],
},
}
]
generate_kwargs = dict(
temperature=0.9,
max_new_tokens=10000,
top_p=0.9,
repetition_penalty=1.0,
do_sample=True,
)
prompt += f"\nPlease format the output in JSON. The JSON should include fields for 'name', 'description', 'ingredients', and 'instructions', with each field structured as described below.\n\n{json.dumps(functions)}"
response = client.text_generation(prompt, **generate_kwargs)
st.session_state.recipe = response
st.session_state.recipe_saved = False
def clear_inputs():
st.session_state.user_direction = None
st.session_state.exclusions = None
st.session_state.serving_size = 2
st.session_state.selected_difficulty = "Quick & Easy"
st.session_state.recipe = None
st.title("Let's get cooking")
col1, col2 = columns(2)
with col1:
st.session_state.user_direction = text_area(
"What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
value=st.session_state.user_direction,
placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
)
with col2:
st.session_state.serving_size = number_input(
"How many servings would you like to cook?",
min_value=1,
max_value=100,
value=st.session_state.serving_size,
step=1
)
difficulty_dictionary = {
"Quick & Easy": {
"description": "Easy recipes with straightforward instructions. Ideal for beginners or those seeking quick and simple cooking.",
},
"Intermediate": {
"description": "Recipes with some intricate steps that invite a little challenge. Perfect for regular cooks wanting to expand their repertoire with new ingredients and techniques.",
},
"Professional": {
"description": "Complex recipes that demand a high level of skill and precision. Suited for seasoned cooks aspiring to professional-level sophistication and creativity.",
}
}
st.session_state.selected_difficulty = st.radio(
"Choose a difficulty level for your recipe.",
[
list(difficulty_dictionary.keys())[0],
list(difficulty_dictionary.keys())[1],
list(difficulty_dictionary.keys())[2]
],
captions=[
difficulty_dictionary["Quick & Easy"]["description"],
difficulty_dictionary["Intermediate"]["description"],
difficulty_dictionary["Professional"]["description"]
],
index=list(difficulty_dictionary).index(st.session_state.selected_difficulty)
)
st.session_state.exclusions = text_area(
"Any ingredients you want to exclude?",
value=st.session_state.exclusions,
placeholder="gluten, dairy, nuts, cilantro",
)
fancy_exclusions = ""
if st.session_state.selected_difficulty == "Professional":
exclude_fancy = st.checkbox(
"Exclude cliche professional ingredients? (gold leaf, truffle, edible flowers, microgreens)",
value=True)
if exclude_fancy:
fancy_exclusions = "gold leaf, truffle, edible flowers, microgreens, gold dust"
user_inputs = {
"user_direction": st.session_state.user_direction,
"exclusions": f"{st.session_state.exclusions}, {fancy_exclusions}".strip(", "),
"serving_size": st.session_state.serving_size,
"difficulty": st.session_state.selected_difficulty
}
button_cols_submit = st.columns([1, 1, 4])
with button_cols_submit[0]:
button(txt='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs),
type="primary",
use_container_width=True)
with button_cols_submit[1]:
button(txt='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
with button_cols_submit[2]:
st.empty()
def create_safe_filename(recipe_name):
# format and generate random URL-safe text string
safe_name = recipe_name.lower()
safe_name = safe_name.replace(" ", "_")
safe_name = re.sub(r"[^a-zA-Z0-9_]", "", safe_name)
safe_name = (safe_name[:50]) if len(safe_name) > 50 else safe_name
unique_token = secrets.token_hex(8)
safe_filename = f"{unique_token}_{safe_name}"
return safe_filename
def save_recipe():
with st.spinner('WAIT SAVING YOUR DISH...'):
filename = create_safe_filename(recipe["name"])
os.makedirs('data', exist_ok=True)
with open(f'./data/{filename}.pkl', 'wb') as f:
pickle.dump(recipe, f)
st.session_state.recipe_saved = True
if st.session_state.recipe is not None:
st.divider()
print(st.session_state.recipe)
recipe = json.loads(st.session_state.recipe)
if not st.session_state.recipe_saved:
show_recipe(recipe)
recipe['timestamp'] = str(datetime.datetime.now())
if st.session_state.recipe_saved == True:
disable_button = True
else:
disable_button = False
button_cols_save = st.columns([1, 1, 4])
with button_cols_save[0]:
button("Save Recipe", on_click=save_recipe, disabled=disable_button, type="primary")
with button_cols_save[1]:
st.empty()
with button_cols_save[2]:
st.empty()
if st.session_state.recipe_saved == True:
st.success("Recipe Saved!")
@st.fragment
def rsaved():
st.title("Saved Recipes")
def load_saved_recipes_from_pickle(directory_path):
os.makedirs('data', exist_ok=True)
recipes = []
# Iterate through all files in the directory
for filename in os.listdir(directory_path):
if filename.endswith('.pkl'):
file_path = os.path.join(directory_path, filename)
with open(file_path, 'rb') as file:
recipe = pickle.load(file)
recipes.append(recipe)
return recipes
# get all saved files
directory_path = 'data'
recipes = load_saved_recipes_from_pickle(directory_path)
# print(recipes)
cols = st.columns([4, 1])
with cols[1]:
user_sort = st.selectbox("Sort", ('Recent', 'Oldest', 'A-Z', 'Z-A', 'Random'))
if user_sort == 'Recent':
recipes.sort(key=lambda x: x['timestamp'], reverse=True)
elif user_sort == 'Oldest':
recipes.sort(key=lambda x: x['timestamp'])
elif user_sort == 'A-Z':
recipes.sort(key=lambda x: x['name'])
elif user_sort == 'Z-A':
recipes.sort(key=lambda x: x['name'], reverse=True)
elif user_sort == 'Random':
recipes.sort(key=lambda x: x['file'])
with cols[0]:
user_search = selectbox("Search Recipes", [""] + [recipe['name'] for recipe in recipes])
st.write("") # just some space
if user_search != "":
st.divider()
filtered_recipes = [recipe for recipe in recipes if recipe['name'] == user_search]
if filtered_recipes:
show_recipe(filtered_recipes[0])
else:
st.write("No recipe found.")
@st.fragment
def mart():
st.markdown("# :eyes: PEOPLE SEARCHING FOR...")
print(st.session_state.ind)
flattened_indices = list(set(index for sublist in st.session_state.ind for index in sublist))
df = items_dict.iloc[flattened_indices]
if st.session_state.ind != []:
with spinner("LET'S SEE, WHAT PEOPLE WANT..."):
cont1 = container(border=True, height=500)
with cont1:
wc = wordcloud.WordCloud(width=1000, height=320, background_color='white').generate(
' '.join(df['CATEGORY']))
# Display word cloud
fig, ax = plt.subplots()
ax.imshow(wc, interpolation='bilinear')
ax.axis('off')
st.pyplot(fig, use_container_width=True)
with container(border=True, height=500):
col1, col2 = columns(2)
with col1:
st.markdown('## DEMAND AS PER CATEGORY')
with plt.style.context('Solarize_Light2'):
fig0 = px.pie(df, names='CATEGORY', hole=0.5)
fig0.update_traces(text=df['CATEGORY'], textposition='outside')
st.plotly_chart(fig0, use_container_width=True)
with col2:
st.markdown('## DEMAND AS PER AVAILABILITY')
with plt.style.context('Solarize_Light2'):
fig1 = px.pie(df, names='AVAILABILITY', hole=0.5)
fig1.update_traces(text=df['AVAILABILITY'], textposition='outside')
st.plotly_chart(fig1, use_container_width=True)
with container(border=True, height=620):
st.markdown('## :deciduous_tree: Hierarchical view of demand using TreeMap')
fig4 = px.treemap(df, path=['CATEGORY', 'AVAILABILITY','PRODUCT'],color='AVAILABILITY')
fig4.update_layout(height=550)
st.plotly_chart(fig4, use_container_width=True,scrolling=False)
with container(border=True, height=500):
fig = px.bar(df,
y='CATEGORY',
x='BREADCRUMBS',
color='BRAND',
# title='Gross Sales of Every Segment Country-wise',
barmode='relative',
title="CATEGORY Vs. BREADCRUMBS"
)
st.plotly_chart(fig, use_container_width=True)
# st.markdown("## :desktop_computer: DO YOUR OWN RESEARCH...")
with expander("## :desktop_computer: LOOKING FOR SOMETHING ELSE..."):
pygwalerapp(df).explorer()
# Initialize the inference client for the Mixtral model
@st.fragment
def tabs():
return st.tabs(['COOK','SAVED'])
if not mode:
cook, saved = tabs()
with cook:
cooking()
with saved:
rsaved()
else:
mart() |