File size: 19,378 Bytes
ee89318
fc17498
7042fc3
cca57f2
6795bf0
fc17498
2590d8a
fc17498
5cb7f33
 
 
 
cca57f2
 
ba52fb4
bf24bdd
ffb922b
 
8576e15
ffb922b
7856036
ffb922b
 
 
 
7856036
ffb922b
 
 
7856036
c4a397e
ffb922b
101017e
3003fc6
 
26b4729
e81c2f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bf24bdd
ffb922b
 
4c5033c
 
 
 
 
9753cc8
 
 
 
3003fc6
22b9a53
4c5bb95
26b4729
e81c2f0
c4a397e
 
c910c88
c4a397e
c910c88
 
101017e
c910c88
e81c2f0
c910c88
e81c2f0
 
 
 
 
 
 
 
 
 
c910c88
e81c2f0
 
86b1100
ffb922b
 
ee89318
ffb922b
 
101017e
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1dd930a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3deab7
ffb922b
 
e81c2f0
ffb922b
 
 
1dd930a
c3deab7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a397e
 
c3deab7
 
 
 
 
 
 
 
 
 
 
 
 
 
c4a397e
 
 
c3deab7
c4a397e
c3deab7
 
 
 
 
 
 
 
1f5ff8e
ffb922b
 
 
 
 
 
26b4729
101017e
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
e81c2f0
ffb922b
e81c2f0
ffb922b
 
 
c4a397e
ffb922b
e81c2f0
ffb922b
 
 
 
 
c4a397e
101017e
ffb922b
c3deab7
 
 
 
 
 
 
 
 
c4a397e
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3deab7
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81c2f0
ffb922b
 
 
e81c2f0
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23b8999
325a3cb
76d4008
 
ffb922b
 
 
 
 
 
 
e81c2f0
ffb922b
c4a397e
ffb922b
 
 
 
70a6a1f
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35f6ab6
ffb922b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e81c2f0
ffb922b
 
 
 
 
 
 
 
 
4c5bb95
ffb922b
5cb7f33
 
 
 
 
e81c2f0
 
5cb7f33
 
 
 
 
 
 
 
 
 
 
e81c2f0
 
5cb7f33
 
 
 
 
 
 
 
 
 
 
 
 
 
e81c2f0
ffb922b
5cb7f33
 
 
 
e81c2f0
5cb7f33
 
 
 
 
 
ffb922b
5cb7f33
 
 
e81c2f0
ffb922b
 
35f6ab6
e81c2f0
 
ffb922b
e81c2f0
ffb922b
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import random
import streamlit as st
import re, secrets, os, ast,json
import pandas as pd
from huggingface_hub import login, InferenceClient
import pickle
from sklearn.metrics.pairwise import cosine_similarity
import datetime
import wordcloud
import matplotlib.pyplot as plt
from pygwalker.api.streamlit import StreamlitRenderer
import plotly.express as px

st.set_page_config(layout="wide")

@st.cache_resource
def login_huggingface(token):
    login(token=token)

login_huggingface(token=os.getenv("TOKEN"))

@st.cache_data
def load_pickle(file_path):
    with open(file_path, 'rb') as file:
        return pickle.load(file)

cv = load_pickle('cv.pkl')
vectors = load_pickle('vectors.pkl')
items_dict = pd.DataFrame.from_dict(load_pickle('items_dict.pkl'))


mode = st.toggle(label="MART")

if 'ind' not in st.session_state:
    st.session_state.ind = []


def spinner(txt):return st.spinner(txt)

def columns(n):
    return st.columns(n)

def text_area(txt,value,placeholder):
    return st.text_area(txt,value=value,placeholder=placeholder)

def number_input(txt,min_value,max_value,value,step):return st.number_input(txt,min_value=min_value,max_value=max_value,value=value,step=step)

def button(txt,on_click,type,disabled=False,use_container_width=False,kwargs=None):
    return st.button(label=txt,on_click=on_click,disabled=disabled,type=type,use_container_width=use_container_width,kwargs=kwargs)

def container(border,height):
    return st.container(border=border,height=height)

def selectbox(txt,options,key=None):return st.selectbox(txt,options=options,key=key)
def expander(txt):return st.expander(txt)
@st.cache_resource(show_spinner=False)
def pygwalerapp(df):
    return StreamlitRenderer(df)
def preprocess_text(text):
    # Remove non-alphabet characters and extra spaces
    text = re.sub(r'[^a-zA-Z\s]', '', text)
    text = re.sub(r'\s+', ' ', text).strip()
    return text.lower()
def get_recommendations(user_description, count_vectorizer, count_matrix):
    user_description = preprocess_text(user_description)
    user_vector = count_vectorizer.transform([user_description])
    cosine_similarities = cosine_similarity(user_vector, count_matrix).flatten()
    similar_indices = cosine_similarities.argsort()[::-1]
    return similar_indices[:5]
@st.fragment
def show_recipe(recipe):
    with spinner("HANG TIGHT, RECIPE INCOMING..."):
        name_and_dis = f'# {recipe["name"]}\n\n'
        name_and_dis += f'{recipe["description"]}\n\n'
        ingredients = '## Ingredients:\n'
        instructions = '\n## Instructions:\n'
        for instruction in recipe["instructions"]:
            instructions += f"{instruction['step_number']}. {instruction['instruction']}\n"

        st.write(name_and_dis)
        col01, col02 = columns(2)
        with col01:
            cont = container(border=True, height=500)
            with cont:
                st.write(ingredients)
                for j, i in enumerate(recipe["ingredients"]):
                    ind = get_recommendations(i['name'], cv, vectors)
                    st.session_state.ind.append(ind[:5].tolist())
                    selectbox(i['name'],
                                   options=items_dict.iloc[ind][
                                       "PRODUCT_NAME"].values,
                                   key=f"selectbox_{j}_{i['name']}{random.random() * 100}")
        with col02:
            cont = container(border=True, height=500)
            with cont:st.write(instructions)
# @st.fragment
def cooking():
    client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

    if 'recipe' not in st.session_state:
        st.session_state.recipe = None

    if 'recipe_saved' not in st.session_state:
        st.session_state.recipe_saved = None

    if 'user_direction' not in st.session_state:
        st.session_state.user_direction = None

    if 'serving_size' not in st.session_state:
        st.session_state.serving_size = 2

    if 'selected_difficulty' not in st.session_state:
        st.session_state.selected_difficulty = "Quick & Easy"

    if 'exclusions' not in st.session_state:
        st.session_state.exclusions = None

    def create_detailed_prompt(user_direction, exclusions, serving_size, difficulty):
        if difficulty == "Quick & Easy":
            prompt = (
                f"Provide a 'Quick and Easy' recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
                f"It should require as few ingredients as possible and should be ready in as little time as possible. "
                f"The steps should be simple, and the ingredients should be commonly found in a household pantry. "
                f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
            )
        elif difficulty == "Intermediate":
            prompt = (
                f"Provide a classic recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
                f"The recipe should offer a bit of a cooking challenge but should not require professional skills. "
                f"The recipe should feature traditional ingredients and techniques that are authentic to its cuisine. "
                f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
            )
        elif difficulty == "Professional":
            prompt = (
                f"Provide a advanced recipe for {user_direction} that excludes {exclusions} and has a serving size of {serving_size}. "
                f"The recipe should push the boundaries of culinary arts, integrating unique ingredients, advanced cooking techniques, and innovative presentations. "
                f"The recipe should be able to be served at a high-end restaurant or would impress at a gourmet food competition. "
                f"Provide a detailed ingredient list and step-by-step guide that explains the instructions to prepare in detail."
            )
        return prompt


    def generate_recipe(user_inputs):
        with spinner('Building the perfect recipe...'):
            prompt = create_detailed_prompt(user_inputs['user_direction'], user_inputs['exclusions'],
                                            user_inputs['serving_size'], user_inputs['difficulty'])

            functions = [
                  {
                    "name": "provide_recipe",
                    "description": "Provides a detailed recipe strictly adhering to the user input/specifications, especially ingredient exclusions and the recipe difficulty",
                    "parameters": {
                        "type": "object",
                        "properties": {
                            "name": {
                                "type": "string",
                                "description": "A creative name for the recipe"
                            },
                            "description": {
                                "type": "string",
                                "description": "a brief one-sentence description of the provided recipe"
                            },
                            "ingredients": {
                                "type": "array",
                                "items": {
                                    "type": "object",
                                    "properties": {
                                        "name": {
                                            "type": "string",
                                            "description": "Quantity and name of the ingredient"
                                        }
                                    }
                                }
                            },
                            "instructions": {
                                "type": "array",
                                "items": {
                                    "type": "object",
                                    "properties": {
                                        "step_number": {
                                            "type": "number",
                                            "description": "The sequence number of this step"
                                        },
                                        "instruction": {
                                            "type": "string",
                                            "description": "Detailed description of what to do in this step"
                                        }
                                    }
                                }
                            }
                        },
                        "required": [
                            "name",
                            "description",
                            "ingredients",
                            "instructions"
                            ],
                    },
                  }
                ]
            generate_kwargs = dict(
                temperature=0.9,
                max_new_tokens=10000,
                top_p=0.9,
                repetition_penalty=1.0,
                do_sample=True,
            )

            prompt += f"\nPlease format the output in JSON. The JSON should include fields for 'name', 'description', 'ingredients', and 'instructions', with each field structured as described below.\n\n{json.dumps(functions)}"

            response = client.text_generation(prompt, **generate_kwargs)
            st.session_state.recipe = response
            st.session_state.recipe_saved = False

    def clear_inputs():
        st.session_state.user_direction = None
        st.session_state.exclusions = None
        st.session_state.serving_size = 2
        st.session_state.selected_difficulty = "Quick & Easy"
        st.session_state.recipe = None

    st.title("Let's get cooking")
    col1, col2 = columns(2)
    with col1:
        st.session_state.user_direction = text_area(
            "What do you want to cook? Describe anything - a dish, cuisine, event, or vibe.",
            value=st.session_state.user_direction,
            placeholder="quick snack, asian style bowl with either noodles or rice, something italian",
        )
    with col2:
        st.session_state.serving_size = number_input(
            "How many servings would you like to cook?",
            min_value=1,
            max_value=100,
            value=st.session_state.serving_size,
            step=1
        )

    difficulty_dictionary = {
            "Quick & Easy": {
                "description": "Easy recipes with straightforward instructions. Ideal for beginners or those seeking quick and simple cooking.",
            },
            "Intermediate": {
                "description": "Recipes with some intricate steps that invite a little challenge. Perfect for regular cooks wanting to expand their repertoire with new ingredients and techniques.",
            },
            "Professional": {
                "description": "Complex recipes that demand a high level of skill and precision. Suited for seasoned cooks aspiring to professional-level sophistication and creativity.",
            }
        }

    st.session_state.selected_difficulty = st.radio(
        "Choose a difficulty level for your recipe.",
        [
            list(difficulty_dictionary.keys())[0],
            list(difficulty_dictionary.keys())[1],
            list(difficulty_dictionary.keys())[2]
        ],
        captions=[
            difficulty_dictionary["Quick & Easy"]["description"],
            difficulty_dictionary["Intermediate"]["description"],
            difficulty_dictionary["Professional"]["description"]
        ],
        index=list(difficulty_dictionary).index(st.session_state.selected_difficulty)
    )

    st.session_state.exclusions = text_area(
        "Any ingredients you want to exclude?",
        value=st.session_state.exclusions,
        placeholder="gluten, dairy, nuts, cilantro",
    )

    fancy_exclusions = ""

    if st.session_state.selected_difficulty == "Professional":
        exclude_fancy = st.checkbox(
            "Exclude cliche professional ingredients? (gold leaf, truffle, edible flowers, microgreens)",
            value=True)
        if exclude_fancy:
            fancy_exclusions = "gold leaf, truffle, edible flowers, microgreens, gold dust"

    user_inputs = {
        "user_direction": st.session_state.user_direction,
        "exclusions": f"{st.session_state.exclusions}, {fancy_exclusions}".strip(", "),
        "serving_size": st.session_state.serving_size,
        "difficulty": st.session_state.selected_difficulty
    }

    button_cols_submit = st.columns([1, 1, 4])
    with button_cols_submit[0]:
        button(txt='Submit', on_click=generate_recipe, kwargs=dict(user_inputs=user_inputs),
                  type="primary",
                  use_container_width=True)
    with button_cols_submit[1]:
        button(txt='Reset', on_click=clear_inputs, type="secondary", use_container_width=True)
    with button_cols_submit[2]:
        st.empty()

    def create_safe_filename(recipe_name):
        # format and generate random URL-safe text string
        safe_name = recipe_name.lower()
        safe_name = safe_name.replace(" ", "_")
        safe_name = re.sub(r"[^a-zA-Z0-9_]", "", safe_name)
        safe_name = (safe_name[:50]) if len(safe_name) > 50 else safe_name
        unique_token = secrets.token_hex(8)
        safe_filename = f"{unique_token}_{safe_name}"
        return safe_filename

    def save_recipe():
        with st.spinner('WAIT SAVING YOUR DISH...'):
            filename = create_safe_filename(recipe["name"])
            os.makedirs('data', exist_ok=True)
            with open(f'./data/{filename}.pkl', 'wb') as f:
                pickle.dump(recipe, f)
            st.session_state.recipe_saved = True

    if st.session_state.recipe is not None:
        st.divider()
        print(st.session_state.recipe)
        recipe = json.loads(st.session_state.recipe)
        if not st.session_state.recipe_saved:
            show_recipe(recipe)
        recipe['timestamp'] = str(datetime.datetime.now())
        if st.session_state.recipe_saved == True:
            disable_button = True
        else:
            disable_button = False
        button_cols_save = st.columns([1, 1, 4])
        with button_cols_save[0]:
            button("Save Recipe", on_click=save_recipe, disabled=disable_button, type="primary")
        with button_cols_save[1]:
            st.empty()
        with button_cols_save[2]:
            st.empty()
        if st.session_state.recipe_saved == True:
            st.success("Recipe Saved!")
@st.fragment
def rsaved():
    st.title("Saved Recipes")
    def load_saved_recipes_from_pickle(directory_path):
        os.makedirs('data', exist_ok=True)
        recipes = []
        # Iterate through all files in the directory
        for filename in os.listdir(directory_path):
            if filename.endswith('.pkl'):
                file_path = os.path.join(directory_path, filename)
                with open(file_path, 'rb') as file:
                    recipe = pickle.load(file)
                    recipes.append(recipe)
        return recipes

    # get all saved files
    directory_path = 'data'
    recipes = load_saved_recipes_from_pickle(directory_path)
    # print(recipes)

    cols = st.columns([4, 1])
    with cols[1]:
        user_sort = st.selectbox("Sort", ('Recent', 'Oldest', 'A-Z', 'Z-A', 'Random'))
        if user_sort == 'Recent':
            recipes.sort(key=lambda x: x['timestamp'], reverse=True)
        elif user_sort == 'Oldest':
            recipes.sort(key=lambda x: x['timestamp'])
        elif user_sort == 'A-Z':
            recipes.sort(key=lambda x: x['name'])
        elif user_sort == 'Z-A':
            recipes.sort(key=lambda x: x['name'], reverse=True)
        elif user_sort == 'Random':
            recipes.sort(key=lambda x: x['file'])
    with cols[0]:
        user_search = selectbox("Search Recipes", [""] + [recipe['name'] for recipe in recipes])
    st.write("")  # just some space

    if user_search != "":
        st.divider()
        filtered_recipes = [recipe for recipe in recipes if recipe['name'] == user_search]
        if filtered_recipes:
            show_recipe(filtered_recipes[0])
        else:
            st.write("No recipe found.")
@st.fragment
def mart():
    st.markdown("# :eyes: PEOPLE SEARCHING FOR...")
    print(st.session_state.ind)
    flattened_indices = list(set(index for sublist in st.session_state.ind for index in sublist))
    df = items_dict.iloc[flattened_indices]
    if st.session_state.ind != []:
        with spinner("LET'S SEE, WHAT PEOPLE WANT..."):
            cont1 = container(border=True, height=500)
            with cont1:
                wc = wordcloud.WordCloud(width=1000, height=320, background_color='white').generate(
                    ' '.join(df['CATEGORY']))

                # Display word cloud
                fig, ax = plt.subplots()
                ax.imshow(wc, interpolation='bilinear')
                ax.axis('off')

                st.pyplot(fig, use_container_width=True)

            with container(border=True, height=500):
                col1, col2 = columns(2)
                with col1:
                    st.markdown('## DEMAND AS PER CATEGORY')
                    with plt.style.context('Solarize_Light2'):
                        fig0 = px.pie(df, names='CATEGORY', hole=0.5)
                        fig0.update_traces(text=df['CATEGORY'], textposition='outside')
                        st.plotly_chart(fig0, use_container_width=True)

                with col2:
                    st.markdown('## DEMAND AS PER AVAILABILITY')
                    with plt.style.context('Solarize_Light2'):
                        fig1 = px.pie(df, names='AVAILABILITY', hole=0.5)
                        fig1.update_traces(text=df['AVAILABILITY'], textposition='outside')
                        st.plotly_chart(fig1, use_container_width=True)

            with container(border=True, height=620):
                st.markdown('## :deciduous_tree: Hierarchical view of demand using TreeMap')
                fig4 = px.treemap(df, path=['CATEGORY', 'AVAILABILITY','PRODUCT'],color='AVAILABILITY')
                fig4.update_layout(height=550)
                st.plotly_chart(fig4, use_container_width=True,scrolling=False)

            with container(border=True, height=500):
                fig = px.bar(df,
                             y='CATEGORY',
                             x='BREADCRUMBS',
                             color='BRAND',
                             # title='Gross Sales of Every Segment Country-wise',
                             barmode='relative',
                             title="CATEGORY Vs. BREADCRUMBS"
                             )
                st.plotly_chart(fig, use_container_width=True)
            # st.markdown("## :desktop_computer: DO YOUR OWN RESEARCH...")
            with expander("## :desktop_computer: LOOKING FOR SOMETHING ELSE..."):
                pygwalerapp(df).explorer()
# Initialize the inference client for the Mixtral model
@st.fragment
def tabs():
    return st.tabs(['COOK','SAVED'])
if not mode:
    cook, saved = tabs()
    with cook:
        cooking()
    with saved:
        rsaved()
else:
    mart()