File size: 931 Bytes
8194866 dcd91cb 3bf71d2 8194866 3bf71d2 d2222b4 3bf71d2 d2222b4 3bf71d2 d08a677 3bf71d2 d2222b4 1fdbfe6 3bf71d2 d037b1c d2222b4 3bf71d2 d08a677 3bf71d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# Load the model and config when the script starts
peft_model_id = "phearion/bigbrain-v0.0.1"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)
def greet(text):
batch = tokenizer(f"\"{text}\" ->: ", return_tensors='pt')
# Use torch.no_grad to disable gradient calculation
with torch.no_grad():
output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=15
)
return tokenizer.decode(output_tokens[0], skip_special_tokens=True)
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch() |