File size: 931 Bytes
8194866
dcd91cb
3bf71d2
 
8194866
3bf71d2
d2222b4
 
 
 
3bf71d2
d2222b4
 
3bf71d2
d08a677
3bf71d2
d2222b4
1fdbfe6
3bf71d2
d037b1c
d2222b4
 
3bf71d2
d08a677
3bf71d2
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
import gradio as gr
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model and config when the script starts
peft_model_id = "phearion/bigbrain-v0.0.1"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)


def greet(text):
    batch = tokenizer(f"\"{text}\" ->: ", return_tensors='pt')
    
    # Use torch.no_grad to disable gradient calculation
    with torch.no_grad():
        output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=15
)

    return tokenizer.decode(output_tokens[0], skip_special_tokens=True)


iface = gr.Interface(fn=greet, inputs="text", outputs="text")
iface.launch()