RetreivalData / app.py
TarunEnma's picture
Update app.py
dd91c48 verified
raw
history blame
1.14 kB
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
def get_text():
input_text = st.text_input("You: ", key="input")
return input_text
user_input = get_text()
submit = st.button('Get Answer')
loader = TextLoader('India.txt')
documents =loader.load()
text_splitter = CharacterTextSplitter (chunk_size=200,
chunk_overlap=0)
texts= text_splitter.split_documents(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma.from_documents(texts, embeddings)
db._collection.get(include=['embeddings'])
retriever = db.as_retriever(search_kwargs={"k": 1})
if user_input and submit:
docs = retriever.get_relevant_documents(user_input)
st.write("Answer")
document = docs[0]
page_content = document.page_content
st.write(page_content)
# st.text(file_content)