Spaces:
Sleeping
Sleeping
File size: 1,138 Bytes
c1e2c12 4348f11 42677de dd91c48 570700c dd91c48 50e6b2d 161ffe2 dd91c48 161ffe2 399e958 589eae5 dd91c48 589eae5 dd91c48 589eae5 dd91c48 589eae5 36cc5e8 161ffe2 dd91c48 161ffe2 dd91c48 6c3331a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
from langchain.text_splitter import CharacterTextSplitter
from langchain_community.document_loaders import TextLoader
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
def get_text():
input_text = st.text_input("You: ", key="input")
return input_text
user_input = get_text()
submit = st.button('Get Answer')
loader = TextLoader('India.txt')
documents =loader.load()
text_splitter = CharacterTextSplitter (chunk_size=200,
chunk_overlap=0)
texts= text_splitter.split_documents(documents)
embeddings = SentenceTransformerEmbeddings(model_name="all-MiniLM-L6-v2")
db = Chroma.from_documents(texts, embeddings)
db._collection.get(include=['embeddings'])
retriever = db.as_retriever(search_kwargs={"k": 1})
if user_input and submit:
docs = retriever.get_relevant_documents(user_input)
st.write("Answer")
document = docs[0]
page_content = document.page_content
st.write(page_content)
# st.text(file_content)
|