File size: 9,336 Bytes
b3c74c0
 
 
 
 
 
 
 
 
 
 
 
1119928
b3c74c0
 
7c886b7
 
1119928
7c886b7
 
 
 
 
 
 
5d6a073
7c886b7
1119928
7c886b7
5d6a073
7c886b7
5d6a073
7c886b7
5d6a073
7c886b7
 
 
 
 
 
b3c74c0
 
1119928
b3c74c0
 
 
 
 
5d6a073
 
 
b3c74c0
 
5d6a073
 
 
 
 
b3c74c0
 
 
 
 
5d6a073
 
 
 
b3c74c0
 
 
 
 
 
 
5d6a073
 
 
 
 
 
b3c74c0
 
 
 
 
 
 
 
5d6a073
 
 
b3c74c0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
# -*- coding: utf-8 -*-
"""GradioWebsite.ipynb

Automatically generated by Colab.

Original file is located at
    https://colab.research.google.com/drive/14D-sxTs35_Vc9__q6maqZ6cb8OqfhTqt
"""

import gradio as gr
import torch
import torch.nn.functional as F
from transformers import BertTokenizer, BertForSequenceClassification
import os

def load_model():
    model_name = "indobenchmark/indobert-lite-large-p2"
    model = BertForSequenceClassification.from_pretrained(
        model_name, 
        num_labels=3,
        local_files_only=False,
        ignore_mismatched_sizes=True
    )

    try:
        local_model_path = "model.pt"  # Changed from .safetensors
        if os.path.exists(local_model_path):
            weights = torch.load(local_model_path)
            model.load_state_dict(weights)
            print("βœ… Local model weights loaded successfully!")
        else:
            print("❌ No local model weights found. Using pre-trained weights.")
    except Exception as e:
        print(f"❌ Error loading local weights: {e}")

    model.eval()
    return model

# Load model globally
model = load_model()

# Load the tokenizer
tokenizer = BertTokenizer.from_pretrained('indobenchmark/indobert-lite-large-p2')

def predict_stress_with_accuracy(text_input):
    if not text_input.strip():
        return None, None, None, None

    # Print input for debugging
    print(f"πŸ” Input Text: '{text_input}'")

    # Tokenize the input text
    inputs = tokenizer(text_input, return_tensors="pt", padding=True, truncation=True, max_length=512)
    
    # Print tokenization details
    print("πŸ” Tokenization Details:")
    print(f"  Input IDs: {inputs['input_ids']}")
    print(f"  Attention Mask: {inputs['attention_mask']}")

    # Get the model's output
    with torch.no_grad():
        output = model(**inputs)

    # Print raw logits
    print("πŸ” Raw Logits:")
    print(output.logits)

    # Apply softmax to get probabilities
    probabilities = F.softmax(output.logits, dim=1)

    # Get predictions for all classes
    probs = probabilities[0].tolist()
    confidence_scores = [round(p * 100, 1) for p in probs]

    # Print probabilities
    print("πŸ” Class Probabilities:")
    print(f"  Neutral: {confidence_scores[0]}%")
    print(f"  Mild Stress: {confidence_scores[1]}%")
    print(f"  Very Stress: {confidence_scores[2]}%")

    # Get main prediction
    predicted_class = torch.argmax(probabilities, dim=1).item()
    main_confidence = confidence_scores[predicted_class]

    # Map the predicted class to stress level
    stress_levels = {0: "Neutral", 1: "Mild Stress", 2: "Very Stress"}
    prediction = stress_levels[predicted_class]

    print(f"πŸ” Predicted Class: {prediction} ({main_confidence}% confident)")

    # Rest of the HTML generation code remains the same...
    result_html = f"""
        <div class="result-card">
            <div class="prediction-text">{prediction}</div>
            <div class="confidence-bar-container">
                <div class="confidence-bar" style="width: {main_confidence}%"></div>
                <span class="confidence-text">{main_confidence}% Confident</span>
            </div>
        </div>
    """

    detailed_html = f"""
        <div class="detailed-analysis">
            <div class="analysis-title">Detailed Analysis</div>
            <div class="analysis-bars">
                <div class="analysis-bar">
                    <div class="bar-label">Neutral</div>
                    <div class="bar-container">
                        <div class="bar neutral" style="width: {confidence_scores[0]}%"></div>
                        <span class="bar-value">{confidence_scores[0]}%</span>
                    </div>
                </div>
                <div class="analysis-bar">
                    <div class="bar-label">Mild Stress</div>
                    <div class="bar-container">
                        <div class="bar mild" style="width: {confidence_scores[1]}%"></div>
                        <span class="bar-value">{confidence_scores[1]}%</span>
                    </div>
                </div>
                <div class="analysis-bar">
                    <div class="bar-label">Very Stress</div>
                    <div class="bar-container">
                        <div class="bar very" style="width: {confidence_scores[2]}%"></div>
                        <span class="bar-value">{confidence_scores[2]}%</span>
                    </div>
                </div>
            </div>
        </div>
    """

    return result_html, detailed_html, prediction, main_confidence

# Create the interface
with gr.Blocks(css="""
    #component-0 {
        max-width: 900px;
        margin: auto;
        padding: 0 20px;
    }

    .container {
        background: linear-gradient(135deg, #1a1c29, #2d3748);
        border-radius: 20px;
        padding: 2rem;
        box-shadow: 0 10px 30px rgba(0,0,0,0.2);
    }

    .header {
        text-align: center;
        margin-bottom: 2rem;
    }

    .title {
        font-size: 2.5rem;
        font-weight: bold;
        background: linear-gradient(45deg, #00c6ff, #0072ff);
        -webkit-background-clip: text;
        -webkit-text-fill-color: transparent;
        margin-bottom: 0.5rem;
    }

    .subtitle {
        color: #a0aec0;
        font-size: 1.1rem;
    }

    /* Input styles */
    .input-container {
        background: rgba(255,255,255,0.05);
        border-radius: 15px;
        padding: 1.5rem;
        margin-bottom: 2rem;
    }

    textarea {
        background: rgba(255,255,255,0.07) !important;
        border: 2px solid rgba(255,255,255,0.1) !important;
        border-radius: 12px !important;
        color: white !important;
        font-size: 1.1rem !important;
        transition: all 0.3s ease !important;
    }

    textarea:focus {
        border-color: #00c6ff !important;
        box-shadow: 0 0 20px rgba(0,198,255,0.2) !important;
    }

    /* Result card styles */
    .result-card {
        background: rgba(255,255,255,0.07);
        border-radius: 15px;
        padding: 1.5rem;
        margin-bottom: 1.5rem;
        animation: fadeIn 0.5s ease-out;
    }

    .prediction-text {
        font-size: 1.8rem;
        font-weight: bold;
        color: white;
        text-align: center;
        margin-bottom: 1rem;
    }

    .confidence-bar-container {
        background: rgba(255,255,255,0.1);
        border-radius: 10px;
        height: 20px;
        position: relative;
        overflow: hidden;
    }

    .confidence-bar {
        background: linear-gradient(90deg, #00c6ff, #0072ff);
        height: 100%;
        border-radius: 10px;
        transition: width 0.5s ease-out;
    }

    .confidence-text {
        position: absolute;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        color: white;
        font-weight: bold;
        text-shadow: 0 0 10px rgba(0,0,0,0.5);
    }

    /* Detailed analysis styles */
    .detailed-analysis {
        background: rgba(255,255,255,0.07);
        border-radius: 15px;
        padding: 1.5rem;
        animation: fadeIn 0.5s ease-out;
    }

    .analysis-title {
        color: white;
        font-size: 1.3rem;
        font-weight: bold;
        margin-bottom: 1rem;
        text-align: center;
    }

    .analysis-bar {
        margin-bottom: 1rem;
    }

    .bar-label {
        color: #a0aec0;
        margin-bottom: 0.5rem;
    }

    .bar-container {
        background: rgba(255,255,255,0.1);
        border-radius: 8px;
        height: 15px;
        position: relative;
        overflow: hidden;
    }

    .bar {
        height: 100%;
        transition: width 0.5s ease-out;
    }

    .bar.neutral { background: linear-gradient(90deg, #00f2c3, #0098f0); }
    .bar.mild { background: linear-gradient(90deg, #ffd600, #ff9100); }
    .bar.very { background: linear-gradient(90deg, #ff5724, #ff2d55); }

    .bar-value {
        position: absolute;
        right: 10px;
        top: 50%;
        transform: translateY(-50%);
        color: white;
        font-size: 0.9rem;
        font-weight: bold;
    }

    @keyframes fadeIn {
        from { opacity: 0; transform: translateY(10px); }
        to { opacity: 1; transform: translateY(0); }
    }

    @media (max-width: 768px) {
        .container {
            padding: 1rem;
        }

        .title {
            font-size: 2rem;
        }

        .prediction-text {
            font-size: 1.5rem;
        }
    }
""") as iface:
    gr.HTML("""
        <div class="header">
            <div class="title">Klasifikasi Tingkat Stress</div>
            <div class="subtitle">Jelaskan keadaan emosi Anda dan biarkan AI menganalisis tingkat stres Anda</div>
        </div>
    """)

    with gr.Column(elem_classes="container"):
        text_input = gr.Textbox(
            label="Describe Your Emotional State",
            placeholder="Apa kabar hari ini?",
            lines=4,
            elem_classes="input-container"
        )

        result_html = gr.HTML()
        detailed_html = gr.HTML()
        prediction = gr.State()
        confidence = gr.State()

        text_input.change(
            predict_stress_with_accuracy,
            inputs=[text_input],
            outputs=[result_html, detailed_html, prediction, confidence]
        )

iface.launch(share=True)