cloome / src /training /datasets.py
Ana Sanchez
Add src
979e31c
raw
history blame
9.14 kB
import os
import torch
import numpy as np
import pandas as pd
from pathlib import Path
from scipy.io import mmread
from torchvision.transforms import Compose
from torch.utils.data import Dataset
class CellPainting(Dataset):
def __init__(self, sample_index_file: str, image_directory_path: str = None, molecule_file: str = None, label_matrix_file: str = None,
label_row_index_file: str = None, label_col_index_file: str = None, auxiliary_labels=None,
transforms=None, group_views: bool = False,
subset: float = 1., num_classes: int = None, verbose: bool = False):
""" Read samples from cellpainting dataset."""
self.verbose = verbose
self.molecules = False
self.images = False
assert (os.path.exists(sample_index_file))
print(image_directory_path)
print(molecule_file)
# Read sample index
sample_index = pd.read_csv(sample_index_file, sep=",", header=0)
sample_index.set_index(["SAMPLE_KEY"])
# read auxiliary labels if provided
if auxiliary_labels is not None:
pddata = pd.read_csv(auxiliary_labels, sep=",", header=0)
self.auxiliary_data = pddata.as_matrix()[:, 2:].astype(np.float32)
# threshold
self.auxiliary_data[self.auxiliary_data < 0.75] = -1
self.auxiliary_data[self.auxiliary_data >= 0.75] = 1
self.auxiliary_assays = list(pddata)[2:]
self.n_auxiliary_classes = len(self.auxiliary_assays)
self.auxiliary_smiles = pddata["SMILES"].tolist()
else:
self.n_auxiliary_classes = 0
if image_directory_path:
self.images = True
assert (os.path.exists(image_directory_path))
if group_views:
sample_groups = sample_index.groupby(['PLATE_ID', 'WELL_POSITION'])
sample_keys = list(sample_groups.groups.keys())
sample_index = sample_groups
self.sample_to_smiles = None # TODO
else:
sample_keys = sample_index['SAMPLE_KEY'].tolist()
if auxiliary_labels is not None:
self.sample_to_smiles = dict(zip(sample_index.SAMPLE_KEY, [self.auxiliary_smiles.index(s) for s in sample_index.SMILES]))
else:
self.sample_to_smiles = None
if molecule_file:
self.molecules = True
assert (os.path.exists(molecule_file))
molecule_df = pd.read_hdf(molecule_file, key="df")
#molecule_objs = {index: row.values for index, row in molecule_df.iterrows()}
#keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
mol_keys = list(molecule_df.index.values)
if self.images and self.molecules:
keys = list(set(sample_keys) & set(list(molecule_df.index.values)))
elif self.images:
keys = sample_keys
elif self.molecules:
keys = mol_keys
if len(keys) == 0:
raise Exception("Empty dataset!")
else:
self.log("Found {} samples".format(len(keys)))
if subset != 1.:
sample_keys = sample_keys[:int(len(sample_keys) * subset)]
# Read Label Matrix if specified
if label_matrix_file is not None:
assert (os.path.exists(label_matrix_file))
assert (os.path.exists(label_row_index_file))
assert (os.path.exists(label_col_index_file))
if label_row_index_file is not None and label_col_index_file is not None:
col_index = pd.read_csv(label_col_index_file, sep=",", header=0)
row_index = pd.read_csv(label_row_index_file, sep=",", header=0)
label_matrix = mmread(label_matrix_file).tocsr()
# --
self.label_matrix = label_matrix
self.row_index = row_index
self.col_index = col_index
if group_views:
self.label_dict = dict(
(key, sample_groups.get_group(key).iloc[0].ROW_NR_LABEL_MAT) for key in sample_keys)
else:
self.label_dict = dict(zip(sample_index.SAMPLE_KEY, sample_index.ROW_NR_LABEL_MAT))
self.n_classes = label_matrix.shape[1]
else:
raise Exception("If label is specified index files must be passed!")
else:
self.label_matrix = None
self.row_index = None
self.col_index = None
self.label_dict = None
self.n_classes = num_classes
if auxiliary_labels is not None:
self.n_classes += self.n_auxiliary_classes
# expose everything important
self.data_directory = image_directory_path
self.sample_index = sample_index
if self.molecules:
self.molecule_objs = molecule_df
self.keys = keys
self.n_samples = len(keys)
self.sample_keys = list(keys)
self.group_views = group_views
self.transforms = transforms
# load first sample and check shape
i = 0
sample = self[i][0] if self.molecules else self[i] #getitem returns tuple of img and fp
# while sample["input"] is np.nan and i < len(self):
# sample = self[i][0] if self.molecules else self[i]
# i += 1
#
# if sample["input"] is not None and not np.nan:
# self.data_shape = sample["input"].shape
# else:
# self.data_shape = "Unknown"
# self.log("Discovered {} samples (subset={}) with shape {}".format(self.n_samples, subset, self.data_shape))
def __len__(self):
return len(self.keys)
## TODO: Clean!
def __getitem__(self, idx):
sample_key = self.keys[idx]
if self.molecules and self.images:
mol = self.molecule_objs.loc[sample_key].values
img = self.read_img(sample_key)
# mol = list(self.molecule_objs.loc[sample_key].values)
return img, mol
elif self.images:
img = self.read_img(sample_key)
return img
elif self.molecules:
mol = self.molecule_objs.loc[sample_key].values
return mol
@property
def shape(self):
return self.data_shape
@property
def num_classes(self):
return self.n_classes
def log(self, message):
if self.verbose:
print(message)
def read_img(self, key):
if self.group_views:
X = self.load_view_group(key)
else:
filepath = os.path.join(self.data_directory, "{}.npz".format(key))
if os.path.exists(filepath):
X = self.load_view(filepath=filepath)
index = int(np.where(self.sample_index["SAMPLE_KEY"]==key)[0])
#cpd = str(self.sample_index["CPD_NAME"])
else:
#print("ERROR: Missing sample '{}'".format(key))
return dict(input=np.nan, ID=key)
if self.transforms:
X = self.transforms(X)
# get label
if self.label_dict is not None:
label_idx = self.label_dict[key]
y = self.label_matrix[label_idx].toarray()[0].astype(np.float32)
if self.sample_to_smiles is not None and key in self.sample_to_smiles:
y = np.concatenate([y, self.auxiliary_data[self.sample_to_smiles[key], :]])
return dict(input=X, target=y, ID=key)
else:
return dict(input=X, row_id=index, ID=key)
def get_sample_keys(self):
return self.sample_keys.copy()
def load_view(self, filepath):
"""Load all channels for one sample"""
npz = np.load(filepath, allow_pickle=True)
if "sample" in npz:
image = npz["sample"].astype(np.float32)
#image_reshaped = np.transpose(image, (2, 0, 1))
# for c in range(image.shape[-1]):
# image[:, :, c] = (image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std()
# image[:, :, c] = ((image[:, :, c] - image[:, :, c].mean()) / image[:, :, c].std() * 255).astype(np.uint8)
# image = (image - image.mean()) / image.std()
return image
return None
def load_view_group(self, groupkey):
result = np.empty((1040, 2088 - 12, 5), dtype=np.uint8)
viewgroup = self.sample_index.get_group(groupkey)
for i, view in enumerate(viewgroup.sort_values("SITE", ascending=True).iterrows()):
corner = (0 if int(i / 3) == 0 else 520, i % 3 * 692)
filepath = os.path.join(self.data_directory, "{}.npz".format(view[1].SAMPLE_KEY))
v = self.load_view(filepath=filepath)[:, 4:, :]
# for j in range(v.shape[-1]):
# plt.imshow(v[:, :, j])
# plt.savefig("{}-{}-{}-{}.png".format(groupkey[0], groupkey[1], i, j))
result[corner[0]:corner[0] + 520, corner[1]:corner[1] + 692, :] = v
return result