File size: 14,988 Bytes
ebdd506
 
 
e5921ae
920b235
ebdd506
 
 
 
 
08840fb
ebdd506
 
 
 
 
08840fb
ebdd506
10d3594
ebdd506
 
1f6fb31
0133d2e
 
a57c6eb
0133d2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ebdd506
 
 
0c60a26
ebdd506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d3f4d
ebdd506
 
 
f7d3f4d
ebdd506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f7d3f4d
 
ebdd506
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e247cdf
ebdd506
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
import os
import time
import pdb
import torch
torch.jit._state.disable()
import cuid
import gradio as gr
import spaces
import numpy as np
import sys
import PIL

from huggingface_hub import snapshot_download
import subprocess


ProjectDir = os.path.join(os.path.abspath(os.path.dirname(__file__)), "MuseV")
CheckpointsDir = os.path.join(ProjectDir, "checkpoints")
ignore_video2video = True
max_image_edge = 960

sys.path.insert(0, f"{ProjectDir}")
sys.path.insert(0, f"{ProjectDir}/MMCM")
sys.path.insert(0, f"{ProjectDir}/scripts/gradio")
print("sys.path", sys.path)

result = subprocess.run(
    ["pip", "install", "--no-cache-dir", "-U", "openmim"],
    capture_output=True,
    text=True,
)
print(result)

result = subprocess.run(["mim", "install", "mmengine"], capture_output=True, text=True)
print(result)

result = subprocess.run(
    ["mim", "install", "mmcv>=2.0.1"], capture_output=True, text=True
)
print(result)

result = subprocess.run(
    ["mim", "install", "mmdet>=3.1.0"], capture_output=True, text=True
)
print(result)

result = subprocess.run(
    ["mim", "install", "mmpose>=1.1.0"], capture_output=True, text=True
)
print(result)


def download_model():
    if not os.path.exists(CheckpointsDir):
        print(f"Checkpoint Not Downloaded, start downloading to {CheckpointsDir} ...")
        tic = time.time()
        snapshot_download(
            repo_id="TMElyralab/MuseV",
            local_dir=CheckpointsDir,
            max_workers=8,
            local_dir_use_symlinks=True,
        )
        toc = time.time()
        print(f"download cost {toc-tic} seconds")
    else:
        print("Already download the model.")


download_model()  # for huggingface deployment.
if not ignore_video2video:
    from gradio_video2video import online_v2v_inference
from gradio_text2video import online_t2v_inference


@spaces.GPU(duration=180)
def hf_online_t2v_inference(
    prompt,
    image_np,
    seed,
    fps,
    w,
    h,
    video_len,
    img_edge_ratio,
):
    img_edge_ratio, _, _ = limit_shape(
        image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
    )
    if not isinstance(image_np, np.ndarray):  # None
        raise gr.Error("Need input reference image")
    return online_t2v_inference(
        prompt, image_np, seed, fps, w, h, video_len, img_edge_ratio
    )


@spaces.GPU(duration=180)
def hg_online_v2v_inference(
    prompt,
    image_np,
    video,
    processor,
    seed,
    fps,
    w,
    h,
    video_length,
    img_edge_ratio,
):
    img_edge_ratio, _, _ = limit_shape(
        image_np, w, h, img_edge_ratio, max_image_edge=max_image_edge
    )
    if not isinstance(image_np, np.ndarray):  # None
        raise gr.Error("Need input reference image")
    return online_v2v_inference(
        prompt,
        image_np,
        video,
        processor,
        seed,
        fps,
        w,
        h,
        video_length,
        img_edge_ratio,
    )


def limit_shape(image, input_w, input_h, img_edge_ratio, max_image_edge=max_image_edge):
    """limite generation video shape to avoid gpu memory overflow"""
    if input_h == -1 and input_w == -1:
        if isinstance(image, np.ndarray):
            input_h, input_w, _ = image.shape
        elif isinstance(image, PIL.Image.Image):
            input_w, input_h = image.size
        else:
            raise ValueError(
                f"image should be in [image, ndarray], but given {type(image)}"
            )
    if img_edge_ratio == 0:
        img_edge_ratio = 1
    img_edge_ratio_infact = min(max_image_edge / max(input_h, input_w), img_edge_ratio)
    # print(
    #     image.shape,
    #     input_w,
    #     input_h,
    #     img_edge_ratio,
    #     max_image_edge,
    #     img_edge_ratio_infact,
    # )
    if img_edge_ratio != 1:
        return (
            img_edge_ratio_infact,
            input_w * img_edge_ratio_infact,
            input_h * img_edge_ratio_infact,
        )
    else:
        return img_edge_ratio_infact, -1, -1


def limit_length(length):
    """limite generation video frames numer to avoid gpu memory overflow"""

    if length > 24 * 6:
        gr.Warning("Length need to smaller than 144, dute to gpu memory limit")
        length = 24 * 6
    return length


class ConcatenateBlock(gr.blocks.Block):
    def __init__(self, options):
        self.options = options
        self.current_string = ""

    def update_string(self, new_choice):
        if new_choice and new_choice not in self.current_string.split(", "):
            if self.current_string == "":
                self.current_string = new_choice
            else:
                self.current_string += ", " + new_choice
        return self.current_string


def process_input(new_choice):
    return concatenate_block.update_string(new_choice), ""


control_options = [
    "pose",
    "pose_body",
    "pose_hand",
    "pose_face",
    "pose_hand_body",
    "pose_hand_face",
    "dwpose",
    "dwpose_face",
    "dwpose_hand",
    "dwpose_body",
    "dwpose_body_hand",
    "canny",
    "tile",
    "hed",
    "hed_scribble",
    "depth",
    "pidi",
    "normal_bae",
    "lineart",
    "lineart_anime",
    "zoe",
    "sam",
    "mobile_sam",
    "leres",
    "content",
    "face_detector",
]
concatenate_block = ConcatenateBlock(control_options)


css = """#input_img {max-width: 1024px !important} #output_vid {max-width: 1024px; max-height: 576px}"""


with gr.Blocks(css=css) as demo:
    gr.Markdown(
        "<div align='center'> <h1> MuseV: Infinite-length and High Fidelity Virtual Human Video Generation with Visual Conditioned Parallel Denoising</span> </h1> \
                    <h2 style='font-weight: 450; font-size: 1rem; margin: 0rem'>\
                    </br>\
                    Zhiqiang Xia <sup>*</sup>,\
                    Zhaokang Chen<sup>*</sup>,\
                    Bin Wu<sup>†</sup>,\
                    Chao Li,\
                    Kwok-Wai Hung,\
                    Chao Zhan,\
                    Yingjie He,\
                    Wenjiang Zhou\
                    (<sup>*</sup>Equal Contribution,  <sup>†</sup>Corresponding Author, [email protected])\
                    </br>\
                    Lyra Lab, Tencent Music Entertainment\
                </h2> \
                <a style='font-size:18px;color: #000000' href='https://github.com/TMElyralab/MuseV'>[Github Repo]</a>\
                <a style='font-size:18px;color: #000000'>, which is important to Open-Source projects. Thanks!</a>\
                <a style='font-size:18px;color: #000000' href=''> [ArXiv(Coming Soon)] </a>\
                <a style='font-size:18px;color: #000000' href=''> [Project Page(Coming Soon)] </a> \
                <a style='font-size:18px;color: #000000'>If MuseV is useful, please help star the repo~ </a> </div>"
    )
    with gr.Tab("Text to Video"):
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(label="Prompt")
                image = gr.Image(label="VisionCondImage")
                seed = gr.Number(
                    label="Seed (seed=-1 means that the seeds run each time are different)",
                    value=-1,
                )
                video_length = gr.Number(
                    label="Video Length(need smaller than 144,If you want to be able to generate longer videos, run it locally )",
                    value=12,
                )
                fps = gr.Number(label="Generate Video FPS", value=6)
                gr.Markdown(
                    (
                        "If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
                        "The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
                        "The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
                        "Due to the GPU VRAM limits, the W&H need smaller than 960px"
                    )
                )
                with gr.Row():
                    w = gr.Number(label="Width", value=-1)
                    h = gr.Number(label="Height", value=-1)
                    img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)
                with gr.Row():
                    out_w = gr.Number(label="Output Width", value=0, interactive=False)
                    out_h = gr.Number(label="Output Height", value=0, interactive=False)
                    img_edge_ratio_infact = gr.Number(
                        label="img_edge_ratio in fact",
                        value=1.0,
                        interactive=False,
                    )
                btn1 = gr.Button("Generate")
            out = gr.Video()
            # pdb.set_trace()
        i2v_examples_256 = [
            [
                "(masterpiece, best quality, highres:1),(1boy, solo:1),(eye blinks:1.8),(head wave:1.3)",
                os.path.join(ProjectDir, "./data/images/yongen.jpeg"),
            ],
            [
                "(masterpiece, best quality, highres:1), peaceful beautiful sea scene",
                os.path.join(ProjectDir, "./datadata/images/seaside4.jpeg"),
            ],
        ]
        with gr.Row():
            gr.Examples(
                examples=i2v_examples_256,
                inputs=[prompt, image],
                outputs=[out],
                fn=hf_online_t2v_inference,
                cache_examples=False,
            )
        img_edge_ratio.change(
            fn=limit_shape,
            inputs=[image, w, h, img_edge_ratio],
            outputs=[img_edge_ratio_infact, out_w, out_h],
        )

        video_length.change(
            fn=limit_length, inputs=[video_length], outputs=[video_length]
        )

        btn1.click(
            fn=hf_online_t2v_inference,
            inputs=[
                prompt,
                image,
                seed,
                fps,
                w,
                h,
                video_length,
                img_edge_ratio_infact,
            ],
            outputs=out,
        )

    with gr.Tab("Video to Video"):
        if ignore_video2video:
            gr.Markdown(
                (
                    "Due to GPU limit, MuseVDemo now only support Text2Video. If you want to try Video2Video, please run it locally. \n"
                    "We are trying to support video2video in the future. Thanks for your understanding."
                )
            )
        else:
            with gr.Row():
                with gr.Column():
                    prompt = gr.Textbox(label="Prompt")
                    gr.Markdown(
                        (
                            "pose of VisionCondImage should be same as of the first frame of the video. "
                            "its better generate target first frame whose pose is same as of first frame of the video with text2image tool, sch as MJ, SDXL."
                        )
                    )
                    image = gr.Image(label="VisionCondImage")
                    video = gr.Video(label="ReferVideo")
                    # radio = gr.inputs.Radio(, label="Select an option")
                    # ctr_button = gr.inputs.Button(label="Add ControlNet List")
                    # output_text = gr.outputs.Textbox()
                    processor = gr.Textbox(
                        label=f"Control Condition. gradio code now only support dwpose_body_hand, use command can support multi of {control_options}",
                        value="dwpose_body_hand",
                    )
                    gr.Markdown("seed=-1 means that seeds are different in every run")
                    seed = gr.Number(
                        label="Seed (seed=-1 means that the seeds run each time are different)",
                        value=-1,
                    )
                    video_length = gr.Number(label="Video Length", value=12)
                    fps = gr.Number(label="Generate Video FPS", value=6)
                    gr.Markdown(
                        (
                            "If W&H is -1, then use the Reference Image's Size. Size of target video is $(W, H)*img\_edge\_ratio$. \n"
                            "The shorter the image size, the larger the motion amplitude, and the lower video quality.\n"
                            "The longer the W&H, the smaller the motion amplitude, and the higher video quality.\n"
                            "Due to the GPU VRAM limits, the W&H need smaller than 2000px"
                        )
                    )
                    with gr.Row():
                        w = gr.Number(label="Width", value=-1)
                        h = gr.Number(label="Height", value=-1)
                        img_edge_ratio = gr.Number(label="img_edge_ratio", value=1.0)

                    with gr.Row():
                        out_w = gr.Number(label="Width", value=0, interactive=False)
                        out_h = gr.Number(label="Height", value=0, interactive=False)
                        img_edge_ratio_infact = gr.Number(
                            label="img_edge_ratio in fact",
                            value=1.0,
                            interactive=False,
                        )
                    btn2 = gr.Button("Generate")
                out1 = gr.Video()

            v2v_examples_256 = [
                [
                    "(masterpiece, best quality, highres:1), harley quinn is dancing, animation, by joshua klein",
                    os.path.join(ProjectDir, "./datadata/demo/cyber_girl.png"),
                    os.path.join(ProjectDir, "./datadata/demo/video1.mp4"),
                ],
            ]
            with gr.Row():
                gr.Examples(
                    examples=v2v_examples_256,
                    inputs=[prompt, image, video],
                    outputs=[out],
                    fn=hg_online_v2v_inference,
                    cache_examples=False,
                )

            img_edge_ratio.change(
                fn=limit_shape,
                inputs=[image, w, h, img_edge_ratio],
                outputs=[img_edge_ratio_infact, out_w, out_h],
            )
            video_length.change(
                fn=limit_length, inputs=[video_length], outputs=[video_length]
            )
            btn2.click(
                fn=hg_online_v2v_inference,
                inputs=[
                    prompt,
                    image,
                    video,
                    processor,
                    seed,
                    fps,
                    w,
                    h,
                    video_length,
                    img_edge_ratio_infact,
                ],
                outputs=out1,
            )


# Set the IP and port
ip_address = "0.0.0.0"  # Replace with your desired IP address
port_number = 7860  # Replace with your desired port number


demo.launch(
    share=True, debug=True, server_name=ip_address, server_port=port_number
)