testapp / annotator /zoe /zoedepth /trainers /zoedepth_trainer.py
atatakun's picture
Upload 847 files
8683813
raw
history blame
7.47 kB
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
import torch
import torch.cuda.amp as amp
import torch.nn as nn
from zoedepth.trainers.loss import GradL1Loss, SILogLoss
from zoedepth.utils.config import DATASETS_CONFIG
from zoedepth.utils.misc import compute_metrics
from zoedepth.data.preprocess import get_black_border
from .base_trainer import BaseTrainer
from torchvision import transforms
from PIL import Image
import numpy as np
class Trainer(BaseTrainer):
def __init__(self, config, model, train_loader, test_loader=None, device=None):
super().__init__(config, model, train_loader,
test_loader=test_loader, device=device)
self.device = device
self.silog_loss = SILogLoss()
self.grad_loss = GradL1Loss()
self.scaler = amp.GradScaler(enabled=self.config.use_amp)
def train_on_batch(self, batch, train_step):
"""
Expects a batch of images and depth as input
batch["image"].shape : batch_size, c, h, w
batch["depth"].shape : batch_size, 1, h, w
"""
images, depths_gt = batch['image'].to(
self.device), batch['depth'].to(self.device)
dataset = batch['dataset'][0]
b, c, h, w = images.size()
mask = batch["mask"].to(self.device).to(torch.bool)
losses = {}
with amp.autocast(enabled=self.config.use_amp):
output = self.model(images)
pred_depths = output['metric_depth']
l_si, pred = self.silog_loss(
pred_depths, depths_gt, mask=mask, interpolate=True, return_interpolated=True)
loss = self.config.w_si * l_si
losses[self.silog_loss.name] = l_si
if self.config.w_grad > 0:
l_grad = self.grad_loss(pred, depths_gt, mask=mask)
loss = loss + self.config.w_grad * l_grad
losses[self.grad_loss.name] = l_grad
else:
l_grad = torch.Tensor([0])
self.scaler.scale(loss).backward()
if self.config.clip_grad > 0:
self.scaler.unscale_(self.optimizer)
nn.utils.clip_grad_norm_(
self.model.parameters(), self.config.clip_grad)
self.scaler.step(self.optimizer)
if self.should_log and (self.step % int(self.config.log_images_every * self.iters_per_epoch)) == 0:
# -99 is treated as invalid depth in the log_images function and is colored grey.
depths_gt[torch.logical_not(mask)] = -99
self.log_images(rgb={"Input": images[0, ...]}, depth={"GT": depths_gt[0], "PredictedMono": pred[0]}, prefix="Train",
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
if self.config.get("log_rel", False):
self.log_images(
scalar_field={"RelPred": output["relative_depth"][0]}, prefix="TrainRel")
self.scaler.update()
self.optimizer.zero_grad()
return losses
@torch.no_grad()
def eval_infer(self, x):
with amp.autocast(enabled=self.config.use_amp):
m = self.model.module if self.config.multigpu else self.model
pred_depths = m(x)['metric_depth']
return pred_depths
@torch.no_grad()
def crop_aware_infer(self, x):
# if we are not avoiding the black border, we can just use the normal inference
if not self.config.get("avoid_boundary", False):
return self.eval_infer(x)
# otherwise, we need to crop the image to avoid the black border
# For now, this may be a bit slow due to converting to numpy and back
# We assume no normalization is done on the input image
# get the black border
assert x.shape[0] == 1, "Only batch size 1 is supported for now"
x_pil = transforms.ToPILImage()(x[0].cpu())
x_np = np.array(x_pil, dtype=np.uint8)
black_border_params = get_black_border(x_np)
top, bottom, left, right = black_border_params.top, black_border_params.bottom, black_border_params.left, black_border_params.right
x_np_cropped = x_np[top:bottom, left:right, :]
x_cropped = transforms.ToTensor()(Image.fromarray(x_np_cropped))
# run inference on the cropped image
pred_depths_cropped = self.eval_infer(x_cropped.unsqueeze(0).to(self.device))
# resize the prediction to x_np_cropped's size
pred_depths_cropped = nn.functional.interpolate(
pred_depths_cropped, size=(x_np_cropped.shape[0], x_np_cropped.shape[1]), mode="bilinear", align_corners=False)
# pad the prediction back to the original size
pred_depths = torch.zeros((1, 1, x_np.shape[0], x_np.shape[1]), device=pred_depths_cropped.device, dtype=pred_depths_cropped.dtype)
pred_depths[:, :, top:bottom, left:right] = pred_depths_cropped
return pred_depths
def validate_on_batch(self, batch, val_step):
images = batch['image'].to(self.device)
depths_gt = batch['depth'].to(self.device)
dataset = batch['dataset'][0]
mask = batch["mask"].to(self.device)
if 'has_valid_depth' in batch:
if not batch['has_valid_depth']:
return None, None
depths_gt = depths_gt.squeeze().unsqueeze(0).unsqueeze(0)
mask = mask.squeeze().unsqueeze(0).unsqueeze(0)
if dataset == 'nyu':
pred_depths = self.crop_aware_infer(images)
else:
pred_depths = self.eval_infer(images)
pred_depths = pred_depths.squeeze().unsqueeze(0).unsqueeze(0)
with amp.autocast(enabled=self.config.use_amp):
l_depth = self.silog_loss(
pred_depths, depths_gt, mask=mask.to(torch.bool), interpolate=True)
metrics = compute_metrics(depths_gt, pred_depths, **self.config)
losses = {f"{self.silog_loss.name}": l_depth.item()}
if val_step == 1 and self.should_log:
depths_gt[torch.logical_not(mask)] = -99
self.log_images(rgb={"Input": images[0]}, depth={"GT": depths_gt[0], "PredictedMono": pred_depths[0]}, prefix="Test",
min_depth=DATASETS_CONFIG[dataset]['min_depth'], max_depth=DATASETS_CONFIG[dataset]['max_depth'])
return metrics, losses