Spaces:
Runtime error
Runtime error
import os | |
os.system("pip install torch") | |
os.system("pip install transformers") | |
os.system("pip install sentencepiece") | |
import streamlit as st | |
from transformers import pipeline | |
from transformers import AutoTokenizer, AutoModelForSequenceClassification | |
tokenizer = AutoTokenizer.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment") | |
model = AutoModelForSequenceClassification.from_pretrained("azizbarank/distilbert-base-turkish-cased-sentiment") | |
def classify(text): | |
cls= pipeline("text-classification",model=model, tokenizer=tokenizer) | |
return cls(text)[0]['label'] | |
site_header = st.container() | |
text_input = st.container() | |
model_results = st.container() | |
with site_header: | |
st.title('Turkish Sentiment Analysis 😀😠') | |
st.markdown( | |
""" | |
[Distilled Turkish BERT model](https://huggingface.co/dbmdz/distilbert-base-turkish-cased) that I fine-tuned on the [sepidmnorozy/Turkish_sentiment](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) dataset that is heavily based on different reviews about services/places. | |
For more information on the dataset: | |
* [Hugging Face](https://huggingface.co/datasets/sepidmnorozy/Turkish_sentiment) | |
""" | |
) | |
with text_input: | |
st.header('Is Your Review Considered Positive or Negative?') | |
st.write("""*Please note that predictions are based on how the model was trained, so it may not be an accurate representation.*""") | |
user_text = st.text_input('Enter Text', max_chars=300) | |
with model_results: | |
st.subheader('Prediction:') | |
if user_text: | |
prediction = classify(user_text) | |
if prediction == "LABEL_0": | |
st.subheader('**Negative**') | |
else: | |
st.subheader('**Positive**') | |
st.text('') |