File size: 56,380 Bytes
2200060
 
327238b
 
 
 
 
 
 
 
 
4435ed9
 
f0b4dbf
2200060
43ed509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200060
 
 
 
327238b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50bb610
327238b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50bb610
 
 
 
 
327238b
2200060
43ed509
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200060
3ab1145
 
2200060
 
f0b4dbf
2200060
4bfdcd7
 
 
 
 
 
 
 
 
2200060
 
f0b4dbf
 
 
 
2200060
 
 
 
 
4bfdcd7
2200060
 
 
 
4bfdcd7
 
2200060
 
3f43a4a
ca1362c
4bfdcd7
 
2200060
 
 
 
 
 
 
 
 
d335da5
 
 
3116d80
4bfdcd7
d335da5
 
 
 
bb3dc77
d335da5
bb3dc77
d335da5
2200060
 
 
 
4bfdcd7
2200060
 
 
 
4bfdcd7
 
2200060
 
ca1362c
4bfdcd7
 
2200060
 
 
eafa610
 
 
 
4bfdcd7
eafa610
 
ca1362c
4bfdcd7
eafa610
 
be8288e
2200060
 
 
 
4bfdcd7
2200060
 
 
 
 
 
4bfdcd7
 
2200060
 
 
 
 
 
 
 
4bfdcd7
2200060
 
 
 
 
 
4bfdcd7
 
2200060
 
 
 
 
 
 
 
98e78c1
2200060
b68dcad
2200060
 
 
 
 
01e53e1
 
2200060
 
97ee575
2200060
 
98e78c1
f0b4dbf
 
98e78c1
 
aa69b47
98e78c1
 
aa69b47
98e78c1
 
d335da5
f0b4dbf
 
d335da5
50bb610
d335da5
 
 
98e78c1
 
f0b4dbf
 
98e78c1
 
 
 
f0b4dbf
 
191f79c
98e78c1
 
2200060
728bce4
3752130
 
728bce4
dc2d342
728bce4
dc2d342
18bef21
dc2d342
18bef21
dc2d342
18bef21
dc2d342
728bce4
4435ed9
6bf9df2
 
 
 
 
 
 
7863f11
ae208df
 
 
 
 
 
6bf9df2
 
a99b51b
6bf9df2
e2db460
3881c5d
0455569
 
c2a5995
533d265
72b668c
0455569
80c3c5d
83c071f
6bf9df2
e2db460
 
 
 
c33a45d
e2db460
b68dcad
ef755bb
c33a45d
 
a5fe928
 
ae9b2d5
80c3c5d
4fc5115
 
 
2d76c04
0455569
2d76c04
0455569
 
 
 
2d76c04
3752130
f30e0c2
ed22ed5
3881c5d
ae9b2d5
0455569
3752130
ae9b2d5
 
 
 
 
 
 
 
 
bb3dc77
3752130
 
e3974b2
31e0b3b
 
 
b7dea3c
ad66a13
3752130
6bf9df2
d335da5
1c5bbca
 
e350313
 
 
 
1c5bbca
 
 
a9e9482
1c5bbca
 
 
 
 
 
 
 
 
 
 
e350313
1c5bbca
7c13ef8
1c5bbca
e5e43e2
83c071f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
import keras
import numpy
import gradio
import pandas
import glob
import os
import shutil
import stat
import math
import platform
import scipy.spatial
import plotly.graph_objects as go
import random
from huggingface_hub import from_pretrained_keras

def load_data():

  from datasets import load_dataset

  data = load_dataset("cmudrc/wave-energy", data_files="data.csv", split='train').to_pandas()

  # Open all the files we downloaded at the beginning and take out hte good bits
  curves = data.iloc[:, [i for i in range(1, 3*64+1)]]
  geometry = data.iloc[:, [i for i in range(1 + 3*64, 1 + 3*64 + 32**3)]]
  S = 5
  N = 1000
  D = 3
  F = 64
  G = 32

  flattened_curves = curves.values / 1000000
  curvey_curves = [c.reshape([3, 64]) for c in flattened_curves]

  flattened_geometry = geometry.values
  round_geometry = [g.reshape([32, 32, 32]) for g in flattened_geometry]

  # Return good bits to user
  return curvey_curves, round_geometry, S, N, D, F, G, flattened_curves, flattened_geometry

# Disable eager execution because its bad
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()

class Mesh:
    def __init__(self):
        # Define blank values
        self.np = 0
        self.nf = 0
        self.X = []
        self.Y = []
        self.Z = []
        self.P = []

    def combine_meshes(self, ob1, ob2):
        # Check for largest mesh
        if ob1.nf < ob2.nf:
            coin_test = ob1.make_coin()
            coin_target = ob2.make_coin()
        else:
            coin_test = ob2.make_coin()
            coin_target = ob1.make_coin()
        # Check for duplicate panels
        deletion_list = []
        for iF in range(numpy.size(coin_test[1, 1, :])):
            panel_test = coin_test[:, :, iF]
            for iFF in range(numpy.size(coin_target[1, 1, :])):
                panel_target = coin_target[:, :, iFF]
                if numpy.sum(panel_test == panel_target) == 12:
                    coin_target = numpy.delete(coin_target, iFF, 2)
                    deletion_list.append(iF)
        coin_test = numpy.delete(coin_test, deletion_list, 2)

        # Concatenate unique meshes
        coin = numpy.concatenate((coin_test, coin_target), axis=2)
        self.np = numpy.size(coin[1, 1, :]) * 4
        self.nf = numpy.size(coin[1, 1, :])
        self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)

        iP = 0
        for iF in range(numpy.size(coin[1, 1, :])):
            for iC in range(4):
                self.X[iP] = coin[0, iC, iF]
                self.Y[iP] = coin[1, iC, iF]
                self.Z[iP] = coin[2, iC, iF]
                iP += 1
            self.P[iF, 0] = 1 + iF * 4
            self.P[iF, 1] = 2 + iF * 4
            self.P[iF, 2] = 3 + iF * 4
            self.P[iF, 3] = 4 + iF * 4

    def make_coin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin

    def delete_horizontal_panels(self):
        coin = self.make_coin()
        apex = numpy.min(self.Z)
        zLoc = numpy.zeros(4)
        deletion_list = []

        # Check every panel for horizontality and higher position than lowest point
        for iP in range(self.nf):
            for iC in range(4):
                zLoc[iC] = coin[2, iC, iP]
            if numpy.abs(numpy.mean(zLoc) - zLoc[0]) < 0.001 and numpy.mean(zLoc) > apex:
                deletion_list.append(iP)

        # Delete selected panels
        coin = numpy.delete(coin, deletion_list, 2)

        # Remake mesh
        self.np = numpy.size(coin[1, 1, :]) * 4
        self.nf = numpy.size(coin[1, 1, :])
        self.X = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.Y = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.Z = numpy.zeros(numpy.size(coin[1, 1, :]) * 4)
        self.P = numpy.zeros((numpy.size(coin[1, 1, :]), 4), dtype=int)

        iP = 0
        for iF in range(numpy.size(coin[1, 1, :])):
            for iC in range(4):
                self.X[iP] = coin[0, iC, iF]
                self.Y[iP] = coin[1, iC, iF]
                self.Z[iP] = coin[2, iC, iF]
                iP += 1
            self.P[iF, 0] = 1 + (iF) * 4
            self.P[iF, 1] = 2 + (iF) * 4
            self.P[iF, 2] = 3 + (iF) * 4
            self.P[iF, 3] = 4 + (iF) * 4




def writeMesh(msh, filename):
    with open(filename, 'w') as f:
        f.write('{:d}\n'.format(msh.np))
        f.write('{:d}\n'.format(msh.nf))
        for iP in range(msh.np):
            f.write('  {:.7f}  {:.7f}  {:.7f}\n'.format(msh.X[iP], msh.Y[iP], msh.Z[iP]))
        for iF in range(msh.nf):
            f.write('  {:d}  {:d}  {:d}  {:d}\n'.format(msh.P[iF, 0], msh.P[iF, 1], msh.P[iF, 2], msh.P[iF, 3]))
        return None



class box:
    def __init__(self, length, width, height, cCor):
        self.length = length
        self.width = width
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'box'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        self.nf = 6
        self.np = 8
        self.X = numpy.array(
            [-self.length / 2.0, self.length / 2.0, -self.length / 2.0, self.length / 2.0, -self.length / 2.0,
             self.length / 2.0, -self.length / 2.0, self.length / 2.0])
        self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
                              -self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
        self.Z = numpy.array(
            [-self.height / 2.0, -self.height / 2.0, self.height / 2.0, self.height / 2.0, -self.height / 2.0,
             -self.height / 2.0, self.height / 2.0, self.height / 2.0])
        self.P = numpy.zeros([6, 4], dtype=int)
        self.P[0, :] = numpy.array([3, 4, 2, 1])
        self.P[1, :] = numpy.array([4, 8, 6, 2])
        self.P[2, :] = numpy.array([8, 7, 5, 6])
        self.P[3, :] = numpy.array([7, 3, 1, 5])
        self.P[4, :] = numpy.array([2, 6, 5, 1])
        self.P[5, :] = numpy.array([8, 4, 3, 7])
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin




class cone:
    def __init__(self, diameter, height, cCor):
        self.diameter = diameter
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'cone'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        Nz = 3
        theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
        self.nf = 0
        self.np = 0
        r = [0, self.diameter / 2.0, 0]
        z = [0, 0, -self.height]
        self.X = []
        self.Y = []
        self.Z = []
        self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
        n = len(r)

        for iT in range(Ntheta):
            for iN in range(n):
                self.X.append(r[iN] * numpy.cos(theta[iT]))
                self.Y.append(r[iN] * numpy.sin(theta[iT]))
                self.Z.append(z[iN])
                self.np += 1

        iP = 0
        for iN in range(1, n):
            for iT in range(1, Ntheta):
                self.P[iP, 0] = iN + n * (iT - 1)
                self.P[iP, 1] = iN + 1 + n * (iT - 1)
                self.P[iP, 2] = iN + 1 + n * iT
                self.P[iP, 3] = iN + n * iT
                self.nf += 1
                iP += 1

        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin



class cylinder:
    def __init__(self, diameter, height, cCor):
        self.diameter = diameter
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'cylinder'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        Nz = 3
        theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
        self.nf = 0
        self.np = 0
        r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
        z = [0, 0, -self.height, -self.height]
        self.X = []
        self.Y = []
        self.Z = []
        self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
        n = len(r)

        for iT in range(Ntheta):
            for iN in range(n):
                self.X.append(r[iN] * numpy.cos(theta[iT]))
                self.Y.append(r[iN] * numpy.sin(theta[iT]))
                self.Z.append(z[iN])
                self.np += 1

        iP = 0
        for iN in range(1, n):
            for iT in range(1, Ntheta):
                self.P[iP, 0] = iN + n * (iT - 1)
                self.P[iP, 1] = iN + 1 + n * (iT - 1)
                self.P[iP, 2] = iN + 1 + n * iT
                self.P[iP, 3] = iN + n * iT
                self.nf += 1
                iP += 1

        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin




class hemicylinder:
    def __init__(self, diameter, height, cCor):
        self.diameter = diameter
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'hemicylinder'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        Nz = 3
        theta = [xx * numpy.pi / (Ntheta - 1) - numpy.pi / 2.0 for xx in range(Ntheta)]
        self.nf = 0
        self.np = 0
        r = [0, self.diameter / 2.0, self.diameter / 2.0, 0]
        z = [self.height / 2.0, self.height / 2.0, -self.height / 2.0, -self.height / 2.0]
        self.X = []
        self.Y = []
        self.Z = []
        self.P = numpy.zeros([(len(r) - 1) * (Ntheta - 1), 4], dtype=int)
        n = len(r)

        for iT in range(Ntheta):
            for iN in range(n):
                self.Z.append(-r[iN] * numpy.cos(theta[iT]))
                self.X.append(r[iN] * numpy.sin(theta[iT]))
                self.Y.append(z[iN])
                self.np += 1

        iP = 0
        for iN in range(1, n):
            for iT in range(1, Ntheta):
                self.P[iP, 3] = iN + n * (iT - 1)
                self.P[iP, 2] = iN + 1 + n * (iT - 1)
                self.P[iP, 1] = iN + 1 + n * iT
                self.P[iP, 0] = iN + n * iT
                self.nf += 1
                iP += 1

        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin


class sphere:
    def __init__(self, diameter, cCor):
        self.diameter = diameter
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'sphere'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        Nthetad2 = int(Ntheta / 2)
        Nz = 3
        theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
        phi = [xx * numpy.pi / (Ntheta / 2 - 1) for xx in range(Nthetad2)]
        self.nf = 0
        self.np = 0
        r = self.diameter / 2.0
        self.X = []
        self.Y = []
        self.Z = []
        self.P = numpy.zeros([(Ntheta - 1) * (Nthetad2 - 1), 4], dtype=int)

        for iT in range(Nthetad2):
            for iTT in range(Ntheta):
                self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
                self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
                self.Z.append(r * numpy.cos(phi[iT]))
                self.np += 1

        iP = 0
        for iN in range(1, Ntheta):
            for iT in range(1, Nthetad2):
                self.P[iP, 3] = iN + Ntheta * (iT - 1)
                self.P[iP, 2] = iN + 1 + Ntheta * (iT - 1)
                self.P[iP, 1] = iN + 1 + Ntheta * iT
                self.P[iP, 0] = iN + Ntheta * iT
                self.nf += 1
                iP += 1
        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin





class hemisphere:
    def __init__(self, diameter, cCor):
        self.diameter = diameter
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'hemisphere'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
        phi = [xx * numpy.pi / 2.0 / (Ntheta / 2 - 1) for xx in range(Ntheta / 2)]
        self.nf = 0
        self.np = 0
        r = self.diameter / 2.0
        self.X = []
        self.Y = []
        self.Z = []
        self.P = numpy.zeros([(Ntheta - 1) * (Ntheta / 2 - 1), 4], dtype=int)

        for iT in range(Ntheta / 2):
            for iTT in range(Ntheta):
                self.X.append(r * numpy.cos(theta[iTT]) * numpy.sin(phi[iT]))
                self.Y.append(r * numpy.sin(theta[iTT]) * numpy.sin(phi[iT]))
                self.Z.append(-r * numpy.cos(phi[iT]))
                self.np += 1

        iP = 0
        for iN in range(1, Ntheta):
            for iT in range(1, Ntheta / 2):
                self.P[iP, 0] = iN + Ntheta * (iT - 1)
                self.P[iP, 1] = iN + 1 + Ntheta * (iT - 1)
                self.P[iP, 2] = iN + 1 + Ntheta * iT
                self.P[iP, 3] = iN + Ntheta * iT
                self.nf += 1
                iP += 1

        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin




class pyramid:
    def __init__(self, length, width, height, cCor):
        self.length = length
        self.width = width
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'pyramid'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        self.nf = 6
        self.np = 8
        self.X = numpy.array(
            [0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
        self.Y = numpy.array(
            [0.0, 0.0, self.width / 2.0, self.width / 2.0, 0.0, 0.0, -self.width / 2.0, -self.width / 2.0])
        self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
        self.P = numpy.zeros([6, 4], dtype=int)
        self.P[0, :] = numpy.array([3, 4, 2, 1])
        self.P[1, :] = numpy.array([4, 8, 6, 2])
        self.P[2, :] = numpy.array([8, 7, 5, 6])
        self.P[3, :] = numpy.array([7, 3, 1, 5])
        self.P[4, :] = numpy.array([5, 6, 5, 1])
        self.P[5, :] = numpy.array([8, 4, 3, 7])
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin





class wedge:
    def __init__(self, length, width, height, cCor):
        self.length = length
        self.width = width
        self.height = height
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'wedge'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        self.nf = 6
        self.np = 8
        self.X = numpy.array(
            [0.0, 0.0, -self.length / 2.0, self.length / 2.0, 0.0, 0.0, -self.length / 2.0, self.length / 2.0])
        self.Y = numpy.array([self.width / 2.0, self.width / 2.0, self.width / 2.0, self.width / 2.0, -self.width / 2.0,
                              -self.width / 2.0, -self.width / 2.0, -self.width / 2.0])
        self.Z = numpy.array([-self.height, -self.height, 0.0, 0.0, -self.height, -self.height, 0.0, 0.0])
        self.P = numpy.zeros([6, 4], dtype=int)
        self.P[0, :] = numpy.array([3, 4, 2, 1])
        self.P[1, :] = numpy.array([4, 8, 6, 2])
        self.P[2, :] = numpy.array([8, 7, 5, 6])
        self.P[3, :] = numpy.array([7, 3, 1, 5])
        self.P[4, :] = numpy.array([2, 6, 5, 1])
        self.P[5, :] = numpy.array([8, 4, 3, 7])
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin





class torus:
    def __init__(self, diamOut, diamIn, cCor):
        self.diamOut = diamOut
        self.diamIn = diamIn
        self.xC = cCor[0]
        self.yC = cCor[1]
        self.zC = cCor[2]
        self.name = 'torus'
        self.panelize()
        self.translate(self.xC, self.yC, self.zC)

    def panelize(self):
        Ntheta = 18
        Nphi = 18
        theta = [xx * 2 * numpy.pi / (Ntheta - 1) for xx in range(Ntheta)]
        phi = [xx * 2 * numpy.pi / (Nphi - 1) for xx in range(Nphi)]
        self.nf = 0
        self.np = 0
        self.X = []
        self.Y = []
        self.Z = []
        R = self.diamOut / 2.0
        r = self.diamIn / 2.0

        for iT in range(Ntheta):
            for iP in range(Nphi):
                self.X.append((R + r * numpy.cos(theta[iT])) * numpy.cos(phi[iP]))
                self.Y.append((R + r * numpy.cos(theta[iT])) * numpy.sin(phi[iP]))
                self.Z.append(r * numpy.sin(theta[iT]))
                self.np += 1

        self.nf = (Ntheta - 1) * (Nphi - 1)
        self.P = numpy.zeros([self.nf, 4], dtype=int)
        iPan = 0
        for iT in range(Ntheta - 1):
            for iP in range(Nphi - 1):
                self.P[iPan, 0] = iP + iT * Nphi + 1
                self.P[iPan, 1] = iP + 1 + iT * Nphi + 1
                self.P[iPan, 2] = iP + 1 + Ntheta + iT * Nphi + 1
                self.P[iPan, 3] = iP + Ntheta + iT * Nphi + 1
                iPan += 1

        self.X = numpy.array(self.X)
        self.Y = numpy.array(self.Y)
        self.Z = numpy.array(self.Z)
        # Define triangles for plotting
        self.trii = numpy.zeros([2 * self.nf, 3], dtype=int)
        iT = 0
        for iTr in range(self.nf):
            self.trii[iT, :] = [self.P[iTr, 0] - 1, self.P[iTr, 1] - 1, self.P[iTr, 2] - 1]
            self.trii[iT + 1, :] = [self.P[iTr, 0] - 1, self.P[iTr, 2] - 1, self.P[iTr, 3] - 1]
            iT += 2

    def translate(self, xT, yT, zT):
        self.X += xT
        self.Y += yT
        self.Z += zT

    def rotate(self, a1, a2, theta):
        R = numpy.zeros([3, 3])
        # Normal vector through origin
        u = a2[0] - a1[0]
        v = a2[1] - a1[1]
        w = a2[2] - a1[2]
        u = u / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        v = v / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        w = w / numpy.sqrt(u ** 2 + v ** 2 + w ** 2)
        # Translate mesh so that rotation axis starts from the origin
        self.X -= a1[0]
        self.Y -= a1[1]
        self.Z -= a1[2]

        # Rotation matrix
        R[0, 0] = u ** 2 + numpy.cos(theta) * (1 - u ** 2)
        R[0, 1] = u * v * (1 - numpy.cos(theta)) - w * numpy.sin(theta)
        R[0, 2] = u * w * (1 - numpy.cos(theta)) + v * numpy.sin(theta)
        R[1, 0] = u * v * (1 - numpy.cos(theta)) + w * numpy.sin(theta)
        R[1, 1] = v ** 2 + numpy.cos(theta) * (1 - v ** 2)
        R[1, 2] = v * w * (1 - numpy.cos(theta)) - u * numpy.sin(theta)
        R[2, 0] = w * u * (1 - numpy.cos(theta)) - v * numpy.sin(theta)
        R[2, 1] = w * v * (1 - numpy.cos(theta)) + u * numpy.sin(theta)
        R[2, 2] = w ** 2 + numpy.cos(theta) * (1 - w ** 2)

        for iP in range(self.np):
            p1 = numpy.array([self.X[iP], self.Y[iP], self.Z[iP]])
            p2 = numpy.dot(R, p1)
            self.X[iP] = p2[0]
            self.Y[iP] = p2[1]
            self.Z[iP] = p2[2]

        # Translate back to original position

        self.X += a1[0]
        self.Y += a1[1]
        self.Z += a1[2]

    def makeCoin(self):
        coin = numpy.zeros((3, 4, self.nf))
        for iF in range(self.nf):
            for iC in range(4):
                coin[0, iC, iF] = self.X[self.P[iF, iC] - 1]
                coin[1, iC, iF] = self.Y[self.P[iF, iC] - 1]
                coin[2, iC, iF] = self.Z[self.P[iF, iC] - 1]
        return coin

def make_voxels_without_figure(shape, length, height, width, diameter):
    pos = [0, 0, 0]
    if shape == "box":
        mesh = box(length, width, height, pos)
    elif shape == "cone":
        mesh = cone(diameter, height, pos)
    elif shape == "cylinder":
        mesh = cylinder(diameter, height, pos)
    elif shape == "sphere":
        mesh = sphere(diameter, pos)
    elif shape == "wedge":
        mesh = wedge(length, width, height, pos)

    hull_points = numpy.array([mesh.X.tolist(), mesh.Y.tolist(), mesh.Z.tolist()]).T

    # Set up test points
    G = 32
    ex = 5 - 5 / G
    x, y, z = numpy.meshgrid(numpy.linspace(-ex, ex, G),
                              numpy.linspace(-ex, ex, G),
                              numpy.linspace(-(9.5 - 5 / G), 0.5 - 5 / G, G))
    test_points = numpy.vstack((x.ravel(), y.ravel(), z.ravel())).T

    hull = scipy.spatial.Delaunay(hull_points)
    within = hull.find_simplex(test_points) >= 0

    return within*1.0
    
    
def make_voxels(shape, length, height, width, diameter):
    return plotly_fig(make_voxels_without_figure(shape, length, height, width, diameter))

# This function loads a fuckton of data
# def load_data():
#     # Open all the files we downloaded at the beginning and take out hte good bits
#     curves = numpy.load('data_curves.npz')['curves']
#     geometry = numpy.load('data_geometry.npz')['geometry']
#     constants = numpy.load('constants.npz')
#     S = constants['S']
#     N = constants['N']
#     D = constants['D']
#     F = constants['F']
#     G = constants['G']

#     # Some of the good bits need additional processining
#     new_curves = numpy.zeros((S*N, D * F))
#     for i, curveset in enumerate(curves):
#         new_curves[i, :] = curveset.T.flatten() / 1000000

#     new_geometry = numpy.zeros((S*N, G * G * G))
#     for i, geometryset in enumerate(geometry):
#         new_geometry[i, :] = geometryset.T.flatten()

#     # Return good bits to user
#     return curves, geometry, S, N, D, F, G, new_curves, new_geometry

curves, geometry, S, N, D, F, G, new_curves, new_geometry = load_data()

class Network(object):

  def __init__(self, type):
      # Instantiate variables
      # self.curves = curves
      # self.new_curves = new_curves
      # self.geometry = geometry
      # self.new_geometry = new_geometry
      # self.S = S
      # self.N = N
      # self.D = D
      # self.F = F
      # self.G = G

      # Load network
      # with open(structure, 'r') as file:
      #     self.network = keras.models.model_from_json(file.read())
      #     self.network.load_weights(weights)
      self.network = from_pretrained_keras("cmudrc/wave-energy-analysis") if type == "forward" else from_pretrained_keras("cmudrc/wave-energy-synthesis")

  def analysis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, S * N)
      else:
        idx = int(idx)

      # Get the input
      data_input = new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((G, G, G), order='F')

      # Get the outputs
      print(data_input.shape)
      predicted_output = self.network.predict(data_input)
      true_output = new_curves[idx].reshape((3, F))
      predicted_output = predicted_output.reshape((3, F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      df_true = pandas.DataFrame(true_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})

      # return idx, other_data_input, true_output, predicted_output
      return pandas.concat([fd, df_pred], axis=1), pandas.concat([fd, df_true], axis=1)


  def analysis_from_geometry(self, geometry):
      # Get the outputs
      predicted_output = self.network.predict(numpy.array([geometry.flatten().tolist()]))
      predicted_output = predicted_output.reshape((3, F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(predicted_output.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      good_frame = pandas.concat([fd, df_pred], axis=1)

      return good_frame, good_frame

  def synthesis(self, idx=None):
      print(idx)

      if idx is None:
          idx = numpy.random.randint(1, S * N)
      else:
        idx = int(idx)

      # Get the input
      data_input = new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3, F))

      # Get the outputs
      predicted_output = self.network.predict(data_input)
      true_output = new_geometry[idx].reshape((G, G, G), order='F')
      predicted_output = predicted_output.reshape((G, G, G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return predicted_output, true_output
      
  
  def synthesis_from_spectrum(self, other_data_input):
      # Get the input
      data_input = other_data_input.reshape((1, 3*F))
 
      # Get the outputs
      predicted_output = self.network.predict(data_input)
      predicted_output = predicted_output.reshape((G, G, G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return predicted_output

  def get_geometry(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, S * N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = new_geometry[idx:(idx+1), :]
      other_data_input = data_input.reshape((G, G, G), order='F')

      # return idx, other_data_input, true_output, predicted_output
      return other_data_input


  def get_performance(self, idx=None):

      if idx is None:
          idx = numpy.random.randint(1, S *N)
      else:
        idx = int(idx)

      idx = int(idx)

      # Get the input
      data_input = new_curves[idx:(idx+1), :]
      other_data_input = data_input.reshape((3,  F))

      f = numpy.linspace(0.05, 2.0, 64)
      fd = pandas.DataFrame(f).rename(columns={0: "Frequency"})
      df_pred = pandas.DataFrame(other_data_input.transpose()).rename(columns={0: "Surge", 1: "Heave", 2: "Pitch"})
      table = pandas.concat([fd, df_pred], axis=1)

      return table


def plotly_fig(values):
    X, Y, Z = numpy.mgrid[0:1:32j, 0:1:32j, 0:1:32j]
    fig = go.Figure(data=go.Volume(
        x=X.flatten(),
        y=Y.flatten(),
        z=Z.flatten(),
        value=values.flatten(),
        isomin=0.0,
        isomax=1.0,
        opacity=0.1, # needs to be small to see through all surfaces
        surface_count=21, # needs to be a large number for good volume rendering
        colorscale='haline'
        ))
    return fig 


value_net = Network("forward")

def performance(index):
    return value_net.get_performance(index)

def geometry(index):
    values = value_net.get_geometry(index)
    return plotly_fig(values)

def simple_analysis(index, choice, shape, length, width, height, diameter): 
    forward_net = Network("forward")
    # forward_net = Network("16forward_structure.json", "16forward_weights.h5")
    if choice == "Construct Shape from Parameters":  
        return forward_net.analysis_from_geometry(make_voxels_without_figure(shape, length, height, width, diameter))
    elif choice == "Pick Shape from Dataset":
        return forward_net.analysis(index)
    

def simple_synthesis(index):
    inverse_net = Network("inverse")
    # inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
    pred, true = inverse_net.synthesis(index)
    return plotly_fig(pred), plotly_fig(true)
    
def synthesis_from_spectrum(df):
    inverse_net = Network("inverse")
    # inverse_net = Network("16inverse_structure.json", "16inverse_weights.h5")
    pred = inverse_net.synthesis_from_spectrum(df.to_numpy()[:, 1:])
    return plotly_fig(pred)
   
    

def change_textbox(choice, length, height, width, diameter):
    fig = make_voxels(choice, length, height, width, diameter)
    if choice == "cylinder":
        return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Plot.update(fig)]
    elif choice == "sphere":
        return [gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Plot.update(fig)]
    elif choice == "box":
        return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Plot.update(fig)]
    elif choice == "wedge":
        return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Plot.update(fig)]
    elif choice == "cone":
        return [gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Slider.update(visible=True), gradio.Slider.update(visible=False), gradio.Plot.update(fig)]

  

def randomize_analysis(choice):
    if choice == "Construct Shape from Parameters": 
        length = random.uniform(3.0, 10.0)
        height = random.uniform(3.0, 10.0)
        width = random.uniform(3.0, 10.0)
        diameter = random.uniform(3.0, 10.0)
        choice2 = random.choice(["box", "cone", "sphere", "wedge", "cone"]) 
        if choice2 == "box" or choice2 == "wedge":
            return [gradio.Radio.update(choice2), gradio.Slider.update(length), gradio.Slider.update(height), gradio.Slider.update(width), gradio.Slider.update(), gradio.Number.update(), gradio.Plot.update(make_voxels(choice2, length, height, width, diameter))]
        elif choice2 == "cone" or choice2 == "cylinder":
            return [gradio.Radio.update(choice2), gradio.Slider.update(), gradio.Slider.update(height), gradio.Slider.update(), gradio.Slider.update(diameter), gradio.Number.update(), gradio.Plot.update(make_voxels(choice2, length, height, width, diameter))]
        elif choice2 == "sphere":
            return [gradio.Radio.update(choice2), gradio.Slider.update(), gradio.Slider.update(), gradio.Slider.update(), gradio.Slider.update(diameter), gradio.Number.update(), gradio.Plot.update(make_voxels(choice2, length, height, width, diameter))]
    elif choice == "Pick Shape from Dataset":
        num = random.randint(1, 4999)
        return [gradio.Radio.update(), gradio.Slider.update(), gradio.Slider.update(), gradio.Slider.update(), gradio.Slider.update(), gradio.Number.update(num), gradio.Plot.update(geometry(num))]
    
   
   
def geometry_change(choice, choice2, num, length, width, height, diameter):
    if choice == "Construct Shape from Parameters":  
        [slider1, slider2, slider3, slider4, plot] = change_textbox(choice2, length, height, width, diameter)
        return [gradio.Radio.update(visible=True), slider1, slider2, slider3, slider4, gradio.Number.update(visible=False), gradio.Timeseries.update(visible=False), gradio.Plot.update(make_voxels(choice2, length, height, width, diameter))]
    elif choice == "Pick Shape from Dataset":
        return [gradio.Radio.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Slider.update(visible=False), gradio.Number.update(visible=True), gradio.Timeseries.update(visible=True), gradio.Plot.update(geometry(num))]
   
with gradio.Blocks() as demo:
    with gradio.Accordion("✨ Read about the underlying ML model here! ✨", open=False):
        with gradio.Row():
            with gradio.Column():
                gradio.Markdown("# Toward the Rapid Design of Engineered Systems Through Deep Neural Networks")
                gradio.HTML("Christopher McComb, Carnegie Mellon University")
                gradio.Markdown("__Abstract__: The design of a system commits a significant portion of the final cost of that system. Many computational approaches have been developed to assist designers in the analysis (e.g., computational fluid dynamics) and synthesis (e.g., topology optimization) of engineered systems. However, many of these approaches are computationally intensive, taking significant time to complete an analysis and even longer to iteratively synthesize a solution. The current work proposes a methodology for rapidly evaluating and synthesizing engineered systems through the use of deep neural networks. The proposed methodology is applied to the analysis and synthesis of offshore structures such as oil platforms. These structures are constructed in a marine environment and are typically designed to achieve specific dynamics in response to a known spectrum of ocean waves. Results show that deep learning can be used to accurately and rapidly synthesize and analyze offshore structure.")
            with gradio.Column():
                download = gradio.HTML("<a href=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/McComb2019_Chapter_TowardTheRapidDesignOfEngineer.pdf\" style=\"width: 60%; display: block; margin: auto;\"><img src=\"https://huggingface.co/spaces/cmudrc/wecnet/resolve/main/coverpage.png\"></a>")
    
    gradio.Markdown("When designing offshore structure, like [wave energy converters](https://www.nrel.gov/news/program/2021/how-wave-energy-could-go-big-by-getting-smaller.html), it's important to know what forces will be placed on the structure as waves come at different speeds. Likewise, if we have some idea of how we want the structure to respond to different waves, we can use that to guide the design of the shape of the structure. We call the first process _Analysis_, and the second process _Synthesis_. This demo has ML models that do both, very quickly.")
    
    with gradio.Tab("Analysis"):        
                 
        with gradio.Row():
            with gradio.Column():                          
                whence_commeth_geometry = gradio.Radio(
                    ["Construct Shape from Parameters", "Pick Shape from Dataset"], label="How would you like to generate the shape of the offshore structure for analysis?", value="Construct Shape from Parameters"
                )
                radio = gradio.Radio(
                    ["box", "cone", "cylinder", "sphere", "wedge"], label="What kind of shape would you like to generate?", value="sphere"
                )
                height = gradio.Slider(label="Height", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=False)
                width = gradio.Slider(label="Width", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=False)
                diameter = gradio.Slider(label="Diameter", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=True)
                length = gradio.Slider(label="Length", interactive=True, minimum=3.0, maximum=10.0, value=6.5, visible=False)
            
                
                num = gradio.Number(42, label="Type the index of the spectrum you would like to use or randomly select it.", visible=False)
                
                btn1 = gradio.Button("Randomize")                                   
            with gradio.Column():
                geo = gradio.Plot(make_voxels("sphere", 6.5, 6.5, 6.5, 6.5), label="Geometry")
                
    
        with gradio.Row():
            btn2 = gradio.Button("Estimate Spectrum")
    
        with gradio.Row():
          with gradio.Column():
              pred = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Predicted")
    
          with gradio.Column():
              true = gradio.Timeseries(x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="True", visible=False)
        
        radio.change(fn=change_textbox, inputs=[radio, length, height, width, diameter], outputs=[height, width, diameter, length, geo])    
        height.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])    
        width.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])    
        diameter.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])    
        length.change(fn=make_voxels, inputs = [radio, length, height, width, diameter], outputs=[geo])
        whence_commeth_geometry.change(fn=geometry_change, inputs=[whence_commeth_geometry, radio, num, length, width, height, diameter], outputs=[radio, height, width, diameter, length, num, true, geo])
        num.change(fn=geometry, inputs=[num], outputs=[geo])
        
        btn1.click(fn=randomize_analysis, inputs=[whence_commeth_geometry], outputs=[radio, length, height, width, diameter, num, geo])
        btn2.click(fn=simple_analysis, inputs=[num, whence_commeth_geometry, radio, length, width, height, diameter], outputs=[pred, true])
    with gradio.Tab("Synthesis"): 
        with gradio.Row():
            with gradio.Column():                         
                whence_commeth_performance = gradio.Radio(
                    ["Construct Spectrum from Table", "Pick Spectrum from Dataset"], label="How would you like to generate the desired response spectrum to synthesize from?", value="Construct Spectrum from Table"
                )
                num = gradio.Number(42, label="Type the index of the shape you would like to use or randomly select it.")
                btn1 = gradio.Button("Randomize")    
            with gradio.Column():
                perf = gradio.Timeseries(lambda: performance(42), x="Frequency", y=['Surge', 'Heave', 'Pitch'], label="Performance")
    
        with gradio.Row():
            btn2 = gradio.Button("Synthesize Geometry")
    
        with gradio.Row():
          with gradio.Column():
              pred = gradio.Plot(label="Predicted")
    
          with gradio.Column():
              true = gradio.Plot(label="True")
    

        btn1.click(fn=lambda: random.randint(1, 4999), inputs=[], outputs=num)
        num.change(fn=performance, inputs=[num], outputs=[perf])
        btn2.click(fn=simple_synthesis, inputs=[num], outputs=[pred, true])
    
demo.launch()