Spaces:
Runtime error
Runtime error
import contextlib | |
import importlib | |
import torch | |
import intel_extension_for_pytorch as ipex # pylint: disable=import-error, unused-import | |
# pylint: disable=protected-access, missing-function-docstring, line-too-long, unnecessary-lambda, no-else-return | |
class CondFunc: # pylint: disable=missing-class-docstring | |
def __new__(cls, orig_func, sub_func, cond_func): | |
self = super(CondFunc, cls).__new__(cls) | |
if isinstance(orig_func, str): | |
func_path = orig_func.split(".") | |
for i in range(len(func_path) - 1, -1, -1): | |
try: | |
resolved_obj = importlib.import_module(".".join(func_path[:i])) | |
break | |
except ImportError: | |
pass | |
for attr_name in func_path[i:-1]: | |
resolved_obj = getattr(resolved_obj, attr_name) | |
orig_func = getattr(resolved_obj, func_path[-1]) | |
setattr( | |
resolved_obj, | |
func_path[-1], | |
lambda *args, **kwargs: self(*args, **kwargs), | |
) | |
self.__init__(orig_func, sub_func, cond_func) | |
return lambda *args, **kwargs: self(*args, **kwargs) | |
def __init__(self, orig_func, sub_func, cond_func): | |
self.__orig_func = orig_func | |
self.__sub_func = sub_func | |
self.__cond_func = cond_func | |
def __call__(self, *args, **kwargs): | |
if not self.__cond_func or self.__cond_func(self.__orig_func, *args, **kwargs): | |
return self.__sub_func(self.__orig_func, *args, **kwargs) | |
else: | |
return self.__orig_func(*args, **kwargs) | |
_utils = torch.utils.data._utils | |
def _shutdown_workers(self): | |
if ( | |
torch.utils.data._utils is None | |
or torch.utils.data._utils.python_exit_status is True | |
or torch.utils.data._utils.python_exit_status is None | |
): | |
return | |
if hasattr(self, "_shutdown") and not self._shutdown: | |
self._shutdown = True | |
try: | |
if hasattr(self, "_pin_memory_thread"): | |
self._pin_memory_thread_done_event.set() | |
self._worker_result_queue.put((None, None)) | |
self._pin_memory_thread.join() | |
self._worker_result_queue.cancel_join_thread() | |
self._worker_result_queue.close() | |
self._workers_done_event.set() | |
for worker_id in range(len(self._workers)): | |
if self._persistent_workers or self._workers_status[worker_id]: | |
self._mark_worker_as_unavailable(worker_id, shutdown=True) | |
for w in self._workers: # pylint: disable=invalid-name | |
w.join(timeout=torch.utils.data._utils.MP_STATUS_CHECK_INTERVAL) | |
for q in self._index_queues: # pylint: disable=invalid-name | |
q.cancel_join_thread() | |
q.close() | |
finally: | |
if self._worker_pids_set: | |
torch.utils.data._utils.signal_handling._remove_worker_pids(id(self)) | |
self._worker_pids_set = False | |
for w in self._workers: # pylint: disable=invalid-name | |
if w.is_alive(): | |
w.terminate() | |
class DummyDataParallel( | |
torch.nn.Module | |
): # pylint: disable=missing-class-docstring, unused-argument, too-few-public-methods | |
def __new__( | |
cls, module, device_ids=None, output_device=None, dim=0 | |
): # pylint: disable=unused-argument | |
if isinstance(device_ids, list) and len(device_ids) > 1: | |
print("IPEX backend doesn't support DataParallel on multiple XPU devices") | |
return module.to("xpu") | |
def return_null_context(*args, **kwargs): # pylint: disable=unused-argument | |
return contextlib.nullcontext() | |
def check_device(device): | |
return bool( | |
(isinstance(device, torch.device) and device.type == "cuda") | |
or (isinstance(device, str) and "cuda" in device) | |
or isinstance(device, int) | |
) | |
def return_xpu(device): | |
return ( | |
f"xpu:{device[-1]}" | |
if isinstance(device, str) and ":" in device | |
else f"xpu:{device}" | |
if isinstance(device, int) | |
else torch.device("xpu") | |
if isinstance(device, torch.device) | |
else "xpu" | |
) | |
def ipex_no_cuda(orig_func, *args, **kwargs): | |
torch.cuda.is_available = lambda: False | |
orig_func(*args, **kwargs) | |
torch.cuda.is_available = torch.xpu.is_available | |
original_autocast = torch.autocast | |
def ipex_autocast(*args, **kwargs): | |
if len(args) > 0 and args[0] == "cuda": | |
return original_autocast("xpu", *args[1:], **kwargs) | |
else: | |
return original_autocast(*args, **kwargs) | |
original_torch_cat = torch.cat | |
def torch_cat(tensor, *args, **kwargs): | |
if len(tensor) == 3 and ( | |
tensor[0].dtype != tensor[1].dtype or tensor[2].dtype != tensor[1].dtype | |
): | |
return original_torch_cat( | |
[tensor[0].to(tensor[1].dtype), tensor[1], tensor[2].to(tensor[1].dtype)], | |
*args, | |
**kwargs, | |
) | |
else: | |
return original_torch_cat(tensor, *args, **kwargs) | |
original_interpolate = torch.nn.functional.interpolate | |
def interpolate( | |
tensor, | |
size=None, | |
scale_factor=None, | |
mode="nearest", | |
align_corners=None, | |
recompute_scale_factor=None, | |
antialias=False, | |
): # pylint: disable=too-many-arguments | |
if antialias or align_corners is not None: | |
return_device = tensor.device | |
return_dtype = tensor.dtype | |
return original_interpolate( | |
tensor.to("cpu", dtype=torch.float32), | |
size=size, | |
scale_factor=scale_factor, | |
mode=mode, | |
align_corners=align_corners, | |
recompute_scale_factor=recompute_scale_factor, | |
antialias=antialias, | |
).to(return_device, dtype=return_dtype) | |
else: | |
return original_interpolate( | |
tensor, | |
size=size, | |
scale_factor=scale_factor, | |
mode=mode, | |
align_corners=align_corners, | |
recompute_scale_factor=recompute_scale_factor, | |
antialias=antialias, | |
) | |
original_linalg_solve = torch.linalg.solve | |
def linalg_solve(A, B, *args, **kwargs): # pylint: disable=invalid-name | |
if A.device != torch.device("cpu") or B.device != torch.device("cpu"): | |
return_device = A.device | |
return original_linalg_solve(A.to("cpu"), B.to("cpu"), *args, **kwargs).to( | |
return_device | |
) | |
else: | |
return original_linalg_solve(A, B, *args, **kwargs) | |
def ipex_hijacks(): | |
CondFunc( | |
"torch.Tensor.to", | |
lambda orig_func, self, device=None, *args, **kwargs: orig_func( | |
self, return_xpu(device), *args, **kwargs | |
), | |
lambda orig_func, self, device=None, *args, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.Tensor.cuda", | |
lambda orig_func, self, device=None, *args, **kwargs: orig_func( | |
self, return_xpu(device), *args, **kwargs | |
), | |
lambda orig_func, self, device=None, *args, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.empty", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.load", | |
lambda orig_func, *args, map_location=None, **kwargs: orig_func( | |
*args, return_xpu(map_location), **kwargs | |
), | |
lambda orig_func, *args, map_location=None, **kwargs: map_location is None | |
or check_device(map_location), | |
) | |
CondFunc( | |
"torch.randn", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.ones", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.zeros", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.tensor", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.linspace", | |
lambda orig_func, *args, device=None, **kwargs: orig_func( | |
*args, device=return_xpu(device), **kwargs | |
), | |
lambda orig_func, *args, device=None, **kwargs: check_device(device), | |
) | |
CondFunc( | |
"torch.Generator", | |
lambda orig_func, device=None: torch.xpu.Generator(device), | |
lambda orig_func, device=None: device is not None | |
and device != torch.device("cpu") | |
and device != "cpu", | |
) | |
CondFunc( | |
"torch.batch_norm", | |
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func( | |
input, | |
weight | |
if weight is not None | |
else torch.ones(input.size()[1], device=input.device), | |
bias | |
if bias is not None | |
else torch.zeros(input.size()[1], device=input.device), | |
*args, | |
**kwargs, | |
), | |
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"), | |
) | |
CondFunc( | |
"torch.instance_norm", | |
lambda orig_func, input, weight, bias, *args, **kwargs: orig_func( | |
input, | |
weight | |
if weight is not None | |
else torch.ones(input.size()[1], device=input.device), | |
bias | |
if bias is not None | |
else torch.zeros(input.size()[1], device=input.device), | |
*args, | |
**kwargs, | |
), | |
lambda orig_func, input, *args, **kwargs: input.device != torch.device("cpu"), | |
) | |
# Functions with dtype errors: | |
CondFunc( | |
"torch.nn.modules.GroupNorm.forward", | |
lambda orig_func, self, input: orig_func( | |
self, input.to(self.weight.data.dtype) | |
), | |
lambda orig_func, self, input: input.dtype != self.weight.data.dtype, | |
) | |
CondFunc( | |
"torch.nn.modules.linear.Linear.forward", | |
lambda orig_func, self, input: orig_func( | |
self, input.to(self.weight.data.dtype) | |
), | |
lambda orig_func, self, input: input.dtype != self.weight.data.dtype, | |
) | |
CondFunc( | |
"torch.nn.modules.conv.Conv2d.forward", | |
lambda orig_func, self, input: orig_func( | |
self, input.to(self.weight.data.dtype) | |
), | |
lambda orig_func, self, input: input.dtype != self.weight.data.dtype, | |
) | |
CondFunc( | |
"torch.nn.functional.layer_norm", | |
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: orig_func( | |
input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs | |
), | |
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs: weight | |
is not None | |
and input.dtype != weight.data.dtype, | |
) | |
# Diffusers Float64 (ARC GPUs doesn't support double or Float64): | |
if not torch.xpu.has_fp64_dtype(): | |
CondFunc( | |
"torch.from_numpy", | |
lambda orig_func, ndarray: orig_func(ndarray.astype("float32")), | |
lambda orig_func, ndarray: ndarray.dtype == float, | |
) | |
# Broken functions when torch.cuda.is_available is True: | |
CondFunc( | |
"torch.utils.data.dataloader._BaseDataLoaderIter.__init__", | |
lambda orig_func, *args, **kwargs: ipex_no_cuda(orig_func, *args, **kwargs), | |
lambda orig_func, *args, **kwargs: True, | |
) | |
# Functions that make compile mad with CondFunc: | |
torch.utils.data.dataloader._MultiProcessingDataLoaderIter._shutdown_workers = ( | |
_shutdown_workers | |
) | |
torch.nn.DataParallel = DummyDataParallel | |
torch.autocast = ipex_autocast | |
torch.cat = torch_cat | |
torch.linalg.solve = linalg_solve | |
torch.nn.functional.interpolate = interpolate | |
torch.backends.cuda.sdp_kernel = return_null_context | |