Spaces:
Runtime error
Runtime error
File size: 8,270 Bytes
55dc8b1 0f23c4b 55dc8b1 e4f39c4 0f23c4b 8339421 0f23c4b 8d04b0f 0f23c4b f2f4fc6 0f23c4b aab5966 0f23c4b aab5966 b96bd14 0f23c4b 55dc8b1 e4f39c4 aab5966 8339421 e4f39c4 8339421 55dc8b1 8339421 e4f39c4 55dc8b1 b96bd14 55dc8b1 b96bd14 55dc8b1 aab5966 b96bd14 8339421 b96bd14 8339421 b96bd14 8339421 31decce 8339421 31decce 0f23c4b 31decce 0f23c4b 31decce aab5966 55dc8b1 31decce aab5966 31decce aab5966 31decce b96bd14 aab5966 b96bd14 31decce b96bd14 31decce 11261a5 8339421 55dc8b1 f2f4fc6 f92dd51 f2f4fc6 55dc8b1 0f23c4b 31decce aab5966 b96bd14 55dc8b1 b96bd14 55dc8b1 e4f39c4 b96bd14 aab5966 b96bd14 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import re
import string
import orjson
import streamlit as st
from annotated_text.util import get_annotated_html
from pipelines.keyphrase_extraction_pipeline import KeyphraseExtractionPipeline
from pipelines.keyphrase_generation_pipeline import KeyphraseGenerationPipeline
@st.cache(allow_output_mutation=True, show_spinner=False)
def load_pipeline(chosen_model):
if "keyphrase-extraction" in chosen_model:
return KeyphraseExtractionPipeline(chosen_model)
elif "keyphrase-generation" in chosen_model:
return KeyphraseGenerationPipeline(chosen_model, truncation=True)
def generate_run_id():
return f"run_{re.sub('keyphrase-extraction-|keyphrase-generation-', '', st.session_state.chosen_model)}_{st.session_state.current_run_id}"
def extract_keyphrases():
st.session_state.keyphrases = pipe(st.session_state.input_text)
st.session_state.history[generate_run_id()] = {
"run_id": st.session_state.current_run_id,
"model": st.session_state.chosen_model,
"text": st.session_state.input_text,
"keyphrases": st.session_state.keyphrases,
}
st.session_state.current_run_id += 1
def get_annotated_text(text, keyphrases, color="#d294ff"):
for keyphrase in keyphrases:
text = re.sub(
rf"({keyphrase})([^A-Za-z0-9])",
rf"$K:{keyphrases.index(keyphrase)}\2",
text,
flags=re.I,
)
result = []
for i, word in enumerate(text.split(" ")):
if "$K" in word and re.search(
"(\d+)$", word.translate(str.maketrans("", "", string.punctuation))
):
result.append(
(
re.sub(
r"\$K:\d+",
keyphrases[
int(
re.search(
"(\d+)$",
word.translate(
str.maketrans("", "", string.punctuation)
),
).group(1)
)
],
word,
),
"KEY",
color,
)
)
else:
if i == len(st.session_state.input_text.split(" ")) - 1:
result.append(f" {word}")
elif i == 0:
result.append(f"{word} ")
else:
result.append(f" {word} ")
return result
def render_output(layout, runs, reverse=False):
runs = list(runs.values())[::-1] if reverse else list(runs.values())
for run in runs:
layout.markdown(
f"""
<p style=\"margin-bottom: 0rem\"><strong>Run:</strong> {run.get('run_id')}</p>
<p style=\"margin-bottom: 0rem\"><strong>Model:</strong> {run.get('model')}</p>
""",
unsafe_allow_html=True,
)
result = get_annotated_text(run.get("text"), list(run.get("keyphrases")))
layout.markdown(
f"""
<p style="margin-bottom: 0.5rem"><strong>Text:</strong></p>
{get_annotated_html(*result)}
""",
unsafe_allow_html=True,
)
if "generation" in run.get("model"):
abstractive_keyphrases = [
(keyphrase, "KEY", "#FFA500")
for keyphrase in run.get("keyphrases")
if keyphrase.lower() not in run.get("text").lower()
]
for i in range(len(abstractive_keyphrases)):
if i % 2 == 0:
abstractive_keyphrases.insert(i + 1, " ")
layout.markdown(
f"<p style=\"margin: 1rem 0 0 0\"><strong>Absent keyphrases:</strong> {get_annotated_html(*abstractive_keyphrases) if abstractive_keyphrases else 'None' }</p>",
unsafe_allow_html=True,
)
layout.markdown("---")
if "config" not in st.session_state:
with open("config.json", "r") as f:
content = f.read()
st.session_state.config = orjson.loads(content)
st.session_state.history = {}
st.session_state.keyphrases = []
st.session_state.current_run_id = 1
st.set_page_config(
page_icon="π",
page_title="Keyphrase extraction/generation with Transformers",
layout="centered",
)
with open("css/style.css") as f:
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
st.header("π Keyphrase extraction/generation with Transformers")
description = """
Keyphrase extraction is a technique in text analysis where you extract the important keyphrases from a document.
Thanks to these keyphrases humans can understand the content of a text very quickly and easily without reading
it completely. Keyphrase extraction was first done primarily by human annotators, who read the text in detail
and then wrote down the most important keyphrases. The disadvantage is that if you work with a lot of documents,
this process can take a lot of time β³.
Here is where Artificial Intelligence π€ comes in. Currently, classical machine learning methods, that use statistical
and linguistic features, are widely used for the extraction process. Now with deep learning, it is possible to capture
the semantic meaning of a text even better than these classical methods. Classical methods look at the frequency,
occurrence and order of words in the text, whereas these neural approaches can capture long-term semantic dependencies
and context of words in a text.
This space gives you the ability to extract keyphrases out of a custom text with transformer-based extraction and generation models.
Keyphrase extraction models are transformer models fine-tuned as a token classification problem where each word in the document
is classified as being part of a keyphrase or not.
The labels used during fine-tuning are B (Beginning of a keyphrase), I (Inside a keyphrases),
and O (Outside a keyhprase).
While keyphrase extraction use encoder-only models to interpret the document. Keyphrase generation models
work a bit differently. Here you use an encoder-decoder model (e.g. BART, T5) to generate keyphrases from a given text.
These models also have the ability to generate keyphrases, which are not present in the text π€―.
This can be really interesting in certain applications. For example if you want to make a news article more discoverable.
Try it out yourself! π
"""
st.write(description)
with st.form("keyphrase-extraction-form"):
st.session_state.chosen_model = st.selectbox(
"Choose your model:", st.session_state.config.get("models")
)
st.markdown(
f"For more information about the chosen model, please be sure to check out the [π€ Model Card](https://huggingface.co/{st.session_state.get('config').get('model_author')}/{st.session_state.chosen_model})."
)
st.session_state.input_text = (
st.text_area(
"β Input",
st.session_state.config.get("example_text"),
height=350,
max_chars=2500,
)
.replace("\n", " ")
.strip()
)
with st.spinner("Extracting keyphrases..."):
_, button_container = st.columns([7, 1])
pressed = button_container.form_submit_button("Extract")
if pressed and st.session_state.input_text != "":
with st.spinner("Loading pipeline..."):
pipe = load_pipeline(
f"{st.session_state.config.get('model_author')}/{st.session_state.chosen_model}"
)
with st.spinner("Extracting keyphrases"):
extract_keyphrases()
elif st.session_state.input_text == "":
st.error("The text input is empty π Please provide a text in the input field.")
if len(st.session_state.history.keys()) > 0:
options = st.multiselect(
"Specify the runs you want to see",
st.session_state.history.keys(),
format_func=lambda run_id: f"Run {run_id.split('_')[-1]}: {run_id.split('_')[1]}",
)
if options:
render_output(
st,
{key: st.session_state.history[key] for key in options},
)
else:
render_output(st, st.session_state.history, reverse=True)
|