File size: 1,060 Bytes
0263fca
c6b9e67
 
0263fca
 
 
 
 
 
579d28f
0263fca
 
 
 
 
 
 
 
 
c51ba33
0263fca
5f61159
c51ba33
c6b9e67
579d28f
0263fca
c51ba33
579d28f
0263fca
 
 
c51ba33
0263fca
6e9b640
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM

# Load the model and tokenizer
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)

# Streamlit app
st.title("blog generator")

# Input area for the topic
topic = st.text_area("Enter the topic for your blog post:")

# Generate button
if st.button("Generate Blog Post"):
    if topic:
        # Prepare the prompt
        prompt = f"Write a blog post about {topic}:\n\n"
            
        # Tokenize the input
        inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")

        # Generate text
        model_output = model.generate(inputs_encoded, max_new_tokens=50, do_sample=True, temperature=0.7)
        
        # Decode the output
        output = tokenizer.decode(model_output[0], skip_special_tokens=True)
        
        # Display the generated blog post
        st.subheader("Generated Blog Post:")
        st.write(output)
    else:
        st.warning("no topic.")