Spaces:
Sleeping
Sleeping
File size: 1,060 Bytes
0263fca c6b9e67 0263fca 579d28f 0263fca c51ba33 0263fca 5f61159 c51ba33 c6b9e67 579d28f 0263fca c51ba33 579d28f 0263fca c51ba33 0263fca 6e9b640 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 |
import streamlit as st
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load the model and tokenizer
model_name = "gpt2-large"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Streamlit app
st.title("blog generator")
# Input area for the topic
topic = st.text_area("Enter the topic for your blog post:")
# Generate button
if st.button("Generate Blog Post"):
if topic:
# Prepare the prompt
prompt = f"Write a blog post about {topic}:\n\n"
# Tokenize the input
inputs_encoded = tokenizer.encode(prompt, return_tensors="pt")
# Generate text
model_output = model.generate(inputs_encoded, max_new_tokens=50, do_sample=True, temperature=0.7)
# Decode the output
output = tokenizer.decode(model_output[0], skip_special_tokens=True)
# Display the generated blog post
st.subheader("Generated Blog Post:")
st.write(output)
else:
st.warning("no topic.") |