sss-gpu / app.py
mtesmer-iqnox's picture
initial
7ed8d70
from typing import List, Dict, Any
import gradio as gr
import spaces
import torch
import numpy as np
# For the dense embedding
from sentence_transformers import SentenceTransformer
# For SPLADE sparse embedding
from transformers import AutoTokenizer, AutoModelForMaskedLM
# For ColBERT
from transformers import AutoModel, AutoTokenizer
############################
# 1) Load models & tokenizers
############################
# 1A) Dense embedding model (Nomic)
dense_model = SentenceTransformer(
"nomic-ai/nomic-embed-text-v1.5",
trust_remote_code=True,
device="cuda" # Force GPU if available
)
# 1B) SPLADE for sparse embeddings
# Using "naver/splade-cocondenser-ensembledistil" as an example
sparse_tokenizer = AutoTokenizer.from_pretrained("naver/splade-cocondenser-ensembledistil")
sparse_model = AutoModelForMaskedLM.from_pretrained("naver/splade-cocondenser-ensembledistil")
sparse_model.eval()
sparse_model.to("cuda") # move to GPU
# 1C) ColBERT model
colbert_tokenizer = AutoTokenizer.from_pretrained("colbert-ir/colbertv2.0")
colbert_model = AutoModel.from_pretrained("colbert-ir/colbertv2.0")
colbert_model.eval()
colbert_model.to("cuda")
############################
# 2) Helper functions
############################
def get_dense_embedding(text: str) -> List[float]:
"""
Use SentenceTransformer to get a single dense vector.
"""
# model.encode returns a NumPy array of shape (dim,)
emb = dense_model.encode(text)
return emb.tolist() # convert to Python list for JSON serialization
def get_splade_sparse_embedding(text: str) -> List[float]:
"""
Compute a sparse embedding with SPLADE (max pooling over tokens).
Returns a large vector ~ vocabulary size, e.g. 30k+ dims.
"""
inputs = sparse_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=256
)
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.no_grad():
# shape: [batch=1, seq_len, vocab_size]
logits = sparse_model(**inputs).logits.squeeze(0) # [seq_len, vocab_size]
# SPLADE approach for query-like encoding (max over sequence dimension):
# For doc encoding, one might do sum instead of max; usage can differ.
# We'll do max pooling: log(1 + ReLU(logits)) -> max over seq_len
sparse_emb = torch.log1p(torch.relu(logits)).max(dim=0).values
# Convert to CPU list
return sparse_emb.cpu().numpy().tolist()
def get_colbert_embedding(text: str) -> List[List[float]]:
"""
Generate token-level embeddings via ColBERT.
Returns a list of [token_dim] for each token in the sequence.
"""
inputs = colbert_tokenizer(
text,
return_tensors="pt",
truncation=True,
max_length=180
)
inputs = {k: v.to("cuda") for k, v in inputs.items()}
with torch.no_grad():
outputs = colbert_model(**inputs)
# outputs.last_hidden_state: [1, seq_len, hidden_dim]
emb = outputs.last_hidden_state.squeeze(0) # shape: [seq_len, hidden_dim]
# Convert each token embedding to a list
return emb.cpu().numpy().tolist()
############################
# 3) The main embedding function
############################
@spaces.GPU
def embed(document: str) -> Dict[str, Any]:
"""
Single function that returns dense, sparse (SPLADE), and ColBERT embeddings.
Decorated with @spaces.GPU for ephemeral GPU usage in Hugging Face Spaces.
"""
dense_emb = get_dense_embedding(document)
sparse_emb = get_splade_sparse_embedding(document)
colbert_emb = get_colbert_embedding(document)
return {
"dense_embedding": dense_emb,
"sparse_embedding": sparse_emb,
"colbert_embedding": colbert_emb
}
############################
# 4) Gradio App
############################
with gr.Blocks() as app:
gr.Markdown("# Multi-Embedding Generator (Dense, SPLADE, ColBERT)")
text_input = gr.Textbox(label="Enter text to embed")
output = gr.JSON(label="Embeddings")
# On submit, call embed() -> returns JSON
text_input.submit(embed, inputs=text_input, outputs=output)
if __name__ == "__main__":
# queue() is optional but useful for concurrency
app.queue().launch(server_name="0.0.0.0", show_error=True, server_port=7860)