sss / app.py
mtesmer-iqnox's picture
sss code
556f1d5
raw
history blame
9.78 kB
import streamlit as st
import json
from typing import List
from fastembed import LateInteractionTextEmbedding, TextEmbedding
from fastembed import SparseTextEmbedding, SparseEmbedding
from qdrant_client import QdrantClient, models
from tokenizers import Tokenizer
#############################
# 1. Utility / Helper Code
#############################
@st.cache_resource
def load_tokenizer():
"""
Load the tokenizer for interpreting sparse embeddings (optional usage).
"""
return Tokenizer.from_pretrained(SparseTextEmbedding.list_supported_models()[0]["sources"]["hf"])
@st.cache_resource
def load_models():
"""
Load/initialize your models once and cache them.
"""
# Dense embedding model
dense_embedding_model = TextEmbedding("BAAI/bge-small-en-v1.5")
# Late interaction model (ColBERTv2)
late_embedding_model = LateInteractionTextEmbedding("colbert-ir/colbertv2.0")
# Sparse embedding model
sparse_model_name = "Qdrant/bm25"
sparse_model = SparseTextEmbedding(model_name=sparse_model_name)
return dense_embedding_model, late_embedding_model, sparse_model
def build_qdrant_index(data):
"""
Given the parsed data (list of items), build an in-memory Qdrant index
with dense, late, and sparse vectors.
"""
# Extract fields
items = data["items"]
descriptions = [f"{item['name']} - {item['description']}" for item in items]
names = [item["name"] for item in items]
metadata = [
{"name": item["name"]} # You can store more fields if you like
for item in items
]
# Load models
dense_embedding_model, late_embedding_model, sparse_model = load_models()
# Generate embeddings
dense_embeddings = list(dense_embedding_model.embed(descriptions))
name_dense_embeddings = list(dense_embedding_model.embed(names))
late_embeddings = list(late_embedding_model.embed(descriptions))
sparse_embeddings: List[SparseEmbedding] = list(sparse_model.embed(descriptions, batch_size=6))
# Create an in-memory Qdrant instance
qdrant_client = QdrantClient(":memory:")
# Create collection schema
qdrant_client.create_collection(
collection_name="items",
vectors_config={
"dense": models.VectorParams(
size=len(dense_embeddings[0]),
distance=models.Distance.COSINE,
),
"late": models.VectorParams(
size=len(late_embeddings[0][0]),
distance=models.Distance.COSINE,
multivector_config=models.MultiVectorConfig(
comparator=models.MultiVectorComparator.MAX_SIM
),
),
},
sparse_vectors_config={
"sparse": models.SparseVectorParams(
modifier=models.Modifier.IDF,
),
}
)
# Upload points
points = []
for idx, _ in enumerate(metadata):
points.append(
models.PointStruct(
id=idx,
payload=metadata[idx],
vector={
"late": late_embeddings[idx].tolist(),
"dense": dense_embeddings[idx],
"sparse": sparse_embeddings[idx].as_object(),
},
)
)
qdrant_client.upload_points(
collection_name="items",
points=points,
)
return qdrant_client
def run_queries(qdrant_client, query_text):
"""
Run all the different query types and return results in a dictionary.
"""
# Load models
dense_embedding_model, late_embedding_model, sparse_model = load_models()
# Generate single-query embeddings
dense_query = next(dense_embedding_model.query_embed(query_text))
late_query = next(late_embedding_model.query_embed(query_text))
sparse_query = next(sparse_model.query_embed(query_text))
# For the fusion approach, we need a list form for prefetch
tsq = list(sparse_model.embed(query_text, batch_size=6))
# We'll store top-5 results for each approach
results = {}
# 1) ColBERT (late)
results["C"] = qdrant_client.query_points(
collection_name="items",
query=late_query,
using="late",
limit=5,
with_payload=True
)
# 2) Sparse only
results["S"] = qdrant_client.query_points(
collection_name="items",
query=models.SparseVector(**sparse_query.as_object()),
using="sparse",
limit=5,
with_payload=True
)
# 3) Dense only
results["D"] = qdrant_client.query_points(
collection_name="items",
query=dense_query,
using="dense",
limit=5,
with_payload=True
)
# 4) Hybrid fusion (RRF for Sparse+Dense)
results["S+D-F"] = qdrant_client.query_points(
collection_name="items",
prefetch=[
models.Prefetch(
query=dense_query,
using="dense",
limit=100,
),
models.Prefetch(
query=tsq[0].as_object(),
using="sparse",
limit=50,
)
],
query=models.FusionQuery(fusion=models.Fusion.RRF),
limit=5,
with_payload=True
)
# 5) Hybrid fusion + ColBERT
sparse_dense_prefetch = models.Prefetch(
prefetch=[
models.Prefetch(query=dense_query, using="dense", limit=100),
models.Prefetch(query=tsq[0].as_object(), using="sparse", limit=50),
],
limit=10,
query=models.FusionQuery(fusion=models.Fusion.RRF),
)
results["S+D-F-C"] = qdrant_client.query_points(
collection_name="items",
prefetch=[sparse_dense_prefetch],
query=late_query,
using="late",
limit=5,
with_payload=True
)
# 6) Hybrid no-fusion + ColBERT
old_prefetch = models.Prefetch(
prefetch=[
models.Prefetch(
prefetch=[
models.Prefetch(query=dense_query, using="dense", limit=100)
],
query=tsq[0].as_object(),
using="sparse",
limit=50,
)
]
)
results["S+D-C"] = qdrant_client.query_points(
collection_name="items",
prefetch=[old_prefetch],
query=late_query,
using="late",
limit=5,
with_payload=True
)
return results
#############################
# 2. Streamlit Main App
#############################
def main():
st.title("Semantic Search Sandbox")
# Initialize session state if not present
if "json_loaded" not in st.session_state:
st.session_state["json_loaded"] = False
if "qdrant_client" not in st.session_state:
st.session_state["qdrant_client"] = None
#######################################
# Show JSON input only if not loaded
#######################################
if not st.session_state["json_loaded"]:
st.subheader("Paste items.json Here")
default_json = """
{
"items": [
{
"name": "Example1",
"description": "An example item"
},
{
"name": "Example2",
"description": "Another item for demonstration"
}
]
}
""".strip()
json_text = st.text_area("JSON Input", value=default_json, height=300)
if st.button("Load JSON"):
try:
data = json.loads(json_text)
# Build Qdrant index in memory
st.session_state["qdrant_client"] = build_qdrant_index(data)
st.session_state["json_loaded"] = True
st.success("JSON loaded and Qdrant index built successfully!")
st.rerun()
except Exception as e:
st.error(f"Error parsing JSON: {e}")
else:
# The data is loaded, show a button to reset if you want to load new JSON
if st.button("Load a different JSON"):
st.session_state["json_loaded"] = False
st.session_state["qdrant_client"] = None
#st.experimental_rerun() # Refresh the page
else:
# Show the search interface
query_text = st.text_input("Search Query", value="ACB 1.0 Ports")
if st.button("Search"):
if st.session_state["qdrant_client"] is None:
st.warning("Please load valid JSON first.")
return
# Run queries
results_dict = run_queries(st.session_state["qdrant_client"], query_text)
# Display results in columns
col_names = list(results_dict.keys())
# You can split into multiple rows if there are more than 3
n_cols = 3
# We'll create enough columns to handle all search types
rows_needed = (len(col_names) + n_cols - 1) // n_cols
for row_idx in range(rows_needed):
cols = st.columns(n_cols)
for col_idx in range(n_cols):
method_idx = row_idx * n_cols + col_idx
if method_idx < len(col_names):
method = col_names[method_idx]
qdrant_result = results_dict[method]
with cols[col_idx]:
st.markdown(f"### {method}")
for point in qdrant_result.points:
name = point.payload.get("name", "Unnamed")
score = round(point.score, 4) if point.score else "N/A"
st.write(f"- **{name}** (score={score})")
if __name__ == "__main__":
main()