mtwohey2's picture
Update app.py
45b851e verified
raw
history blame
16.2 kB
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib
import subprocess
import sys
import spaces
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo.
examples = [
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]
# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration for different encoder variants.
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
def get_video_info(video_path, max_len=-1, target_fps=-1):
"""Extract video information without loading all frames into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Adjust based on max_len parameter
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
else:
fps = original_fps
cap.release()
return {
'width': original_width,
'height': original_height,
'fps': fps,
'original_fps': original_fps,
'frame_count': frame_count,
'total_frames': total_frames
}
def process_frame(frame, max_res):
"""Process a single frame to the desired resolution."""
if max_res > 0:
h, w = frame.shape[:2]
scale = min(max_res / w, max_res / h)
if scale < 1:
new_w, new_h = int(w * scale), int(h * scale)
frame = cv2.resize(frame, (new_w, new_h))
return frame
def frame_generator(video_path, max_len=-1, target_fps=-1, max_res=-1, skip_frames=0):
"""Generate frames from a video file one at a time."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
# Calculate frame skip if target_fps is specified
if target_fps > 0 and target_fps < original_fps:
skip = int(round(original_fps / target_fps)) - 1
else:
skip = skip_frames
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret or (max_len > 0 and frame_count >= max_len):
break
# Process frame if we're not skipping it
if frame_idx % (skip + 1) == 0:
# Convert from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize if necessary
processed_frame = process_frame(frame, max_res)
yield processed_frame
frame_count += 1
frame_idx += 1
cap.release()
@spaces.GPU(enable_queue=True)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_name = os.path.basename(input_video)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
# Get video info first
video_info = get_video_info(input_video, max_len, target_fps)
fps = video_info['fps']
frame_count = video_info['frame_count']
# Set up VideoWriters
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Setup for processing batches of frames
batch_size = 8 # Process frames in small batches to balance efficiency and memory usage
processed_frames = []
depth_frames = []
stitched_frames = []
# Initialize min/max depth values for depth normalization
d_min, d_max = float('inf'), float('-inf')
depth_values = []
# First pass: Process frames for depth inference and collect min/max depth values
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
# Process frames in batches for depth inference
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
batch_count = 0
for i, frame in enumerate(frame_gen):
if i % 10 == 0:
print(f"Processing frame {i+1}/{frame_count}")
processed_frames.append(frame)
# When we have a full batch or reached the end, process it
if len(processed_frames) == batch_size or i == frame_count - 1:
# Process the batch for depth
with torch.no_grad():
batch_depths = video_depth_anything.infer_frames_depth(
processed_frames,
input_size=input_size,
device=DEVICE
)
# Collect depth statistics and frames
for depth in batch_depths:
d_min = min(d_min, depth.min())
d_max = max(d_max, depth.max())
depth_values.append(depth)
# Clear batch for next iteration
processed_frames = []
batch_count += 1
# Free up memory
torch.cuda.empty_cache()
gc.collect()
# Save the processed video
height, width = depth_values[0].shape[:2] if depth_values else (0, 0)
video_writer = cv2.VideoWriter(processed_video_path, fourcc, fps, (width, height))
# Reprocess frames to save original and depth videos
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
depth_writer = cv2.VideoWriter(depth_vis_path, fourcc, fps, (width, height))
for i, (frame, depth) in enumerate(zip(frame_gen, depth_values)):
# Save original frame (convert RGB to BGR for OpenCV)
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
# Normalize and visualize depth
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
if grayscale:
if convert_from_color:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Save depth visualization (convert RGB to BGR for OpenCV)
depth_writer.write(cv2.cvtColor(depth_vis, cv2.COLOR_RGB2BGR))
video_writer.release()
depth_writer.release()
# Process stitched video if requested
stitched_video_path = None
if stitch:
# For stitching: read the original video in full resolution
video_info_full = get_video_info(input_video, max_len, target_fps)
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1) # No resizing
# Create a new writer for the stitched video
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
# Get dimensions of the first frame to setup the video writer
first_frame = next(frame_generator(input_video, 1, -1, -1))
H_full, W_full = first_frame.shape[:2]
# Set up the stitched video writer
stitched_writer = cv2.VideoWriter(
stitched_video_path,
fourcc,
fps,
(W_full * 2, H_full) # Width is doubled for side-by-side
)
# Reset frame generator
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1)
# Process each frame
for i, (rgb_full, depth) in enumerate(zip(original_frame_gen, depth_values)):
if i % 10 == 0:
print(f"Stitching frame {i+1}/{frame_count}")
# Normalize and visualize depth
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization
if grayscale:
if convert_from_color:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize depth to match original frame
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate RGB and depth
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
# Write to video (convert RGB to BGR for OpenCV)
stitched_writer.write(cv2.cvtColor(stitched, cv2.COLOR_RGB2BGR))
stitched_writer.release()
# Merge audio from the input video into the stitched video
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", input_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
# Clean up
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples=False,
cache_mode="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue(max_size=2).launch()