Spaces:
Running
on
Zero
Running
on
Zero
File size: 16,226 Bytes
55ac26c 28da247 55ac26c 19217bc 28da247 45b851e 9c84c70 6922ee3 8265d02 55ac26c 45b851e 55ac26c 9c84c70 55ac26c e003b4c 55ac26c bd5d002 55ac26c 033fb37 55ac26c 28da247 55ac26c 9c84c70 55ac26c 19217bc 55ac26c 9c84c70 239b735 864aa62 55ac26c 45b851e 7d955cd 45b851e 55ac26c 9c84c70 ec38b07 e003b4c 46294a9 55ac26c 45b851e 28da247 45b851e 033fb37 28da247 45b851e 28da247 9c84c70 6d6b641 9c84c70 28da247 6d6b641 28da247 45b851e 28da247 45b851e 28da247 45b851e 033fb37 45b851e 033fb37 45b851e 9c84c70 45b851e 9c84c70 45b851e bddb8a1 45b851e 28da247 55ac26c 28da247 19217bc 55ac26c 9c84c70 4423b71 55ac26c 28da247 19217bc 55ac26c 28da247 9c84c70 28da247 9c84c70 2d7c3b2 28da247 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 2d7c3b2 6d6b641 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 19217bc 55ac26c 7d955cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 |
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib
import subprocess
import sys
import spaces
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo.
examples = [
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]
# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration for different encoder variants.
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
def get_video_info(video_path, max_len=-1, target_fps=-1):
"""Extract video information without loading all frames into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Adjust based on max_len parameter
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
else:
fps = original_fps
cap.release()
return {
'width': original_width,
'height': original_height,
'fps': fps,
'original_fps': original_fps,
'frame_count': frame_count,
'total_frames': total_frames
}
def process_frame(frame, max_res):
"""Process a single frame to the desired resolution."""
if max_res > 0:
h, w = frame.shape[:2]
scale = min(max_res / w, max_res / h)
if scale < 1:
new_w, new_h = int(w * scale), int(h * scale)
frame = cv2.resize(frame, (new_w, new_h))
return frame
def frame_generator(video_path, max_len=-1, target_fps=-1, max_res=-1, skip_frames=0):
"""Generate frames from a video file one at a time."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
original_fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = 0
# Calculate frame skip if target_fps is specified
if target_fps > 0 and target_fps < original_fps:
skip = int(round(original_fps / target_fps)) - 1
else:
skip = skip_frames
frame_idx = 0
while True:
ret, frame = cap.read()
if not ret or (max_len > 0 and frame_count >= max_len):
break
# Process frame if we're not skipping it
if frame_idx % (skip + 1) == 0:
# Convert from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize if necessary
processed_frame = process_frame(frame, max_res)
yield processed_frame
frame_count += 1
frame_idx += 1
cap.release()
@spaces.GPU(enable_queue=True)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_name = os.path.basename(input_video)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
# Get video info first
video_info = get_video_info(input_video, max_len, target_fps)
fps = video_info['fps']
frame_count = video_info['frame_count']
# Set up VideoWriters
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
# Setup for processing batches of frames
batch_size = 8 # Process frames in small batches to balance efficiency and memory usage
processed_frames = []
depth_frames = []
stitched_frames = []
# Initialize min/max depth values for depth normalization
d_min, d_max = float('inf'), float('-inf')
depth_values = []
# First pass: Process frames for depth inference and collect min/max depth values
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
# Process frames in batches for depth inference
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
batch_count = 0
for i, frame in enumerate(frame_gen):
if i % 10 == 0:
print(f"Processing frame {i+1}/{frame_count}")
processed_frames.append(frame)
# When we have a full batch or reached the end, process it
if len(processed_frames) == batch_size or i == frame_count - 1:
# Process the batch for depth
with torch.no_grad():
batch_depths = video_depth_anything.infer_frames_depth(
processed_frames,
input_size=input_size,
device=DEVICE
)
# Collect depth statistics and frames
for depth in batch_depths:
d_min = min(d_min, depth.min())
d_max = max(d_max, depth.max())
depth_values.append(depth)
# Clear batch for next iteration
processed_frames = []
batch_count += 1
# Free up memory
torch.cuda.empty_cache()
gc.collect()
# Save the processed video
height, width = depth_values[0].shape[:2] if depth_values else (0, 0)
video_writer = cv2.VideoWriter(processed_video_path, fourcc, fps, (width, height))
# Reprocess frames to save original and depth videos
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
depth_writer = cv2.VideoWriter(depth_vis_path, fourcc, fps, (width, height))
for i, (frame, depth) in enumerate(zip(frame_gen, depth_values)):
# Save original frame (convert RGB to BGR for OpenCV)
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
# Normalize and visualize depth
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
if grayscale:
if convert_from_color:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Save depth visualization (convert RGB to BGR for OpenCV)
depth_writer.write(cv2.cvtColor(depth_vis, cv2.COLOR_RGB2BGR))
video_writer.release()
depth_writer.release()
# Process stitched video if requested
stitched_video_path = None
if stitch:
# For stitching: read the original video in full resolution
video_info_full = get_video_info(input_video, max_len, target_fps)
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1) # No resizing
# Create a new writer for the stitched video
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
# Get dimensions of the first frame to setup the video writer
first_frame = next(frame_generator(input_video, 1, -1, -1))
H_full, W_full = first_frame.shape[:2]
# Set up the stitched video writer
stitched_writer = cv2.VideoWriter(
stitched_video_path,
fourcc,
fps,
(W_full * 2, H_full) # Width is doubled for side-by-side
)
# Reset frame generator
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1)
# Process each frame
for i, (rgb_full, depth) in enumerate(zip(original_frame_gen, depth_values)):
if i % 10 == 0:
print(f"Stitching frame {i+1}/{frame_count}")
# Normalize and visualize depth
depth_norm = ((depth - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization
if grayscale:
if convert_from_color:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize depth to match original frame
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate RGB and depth
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
# Write to video (convert RGB to BGR for OpenCV)
stitched_writer.write(cv2.cvtColor(stitched, cv2.COLOR_RGB2BGR))
stitched_writer.release()
# Merge audio from the input video into the stitched video
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", input_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
# Clean up
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples=False,
cache_mode="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue(max_size=2).launch() |