mtwohey2's picture
Update app.py
6916b74 verified
raw
history blame
15.3 kB
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib
import subprocess
import sys
import spaces
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo.
examples = [
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]
# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration for different encoder variants.
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
def get_video_info(video_path, max_len=-1, target_fps=-1):
"""Extract video information without loading all frames into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Adjust based on max_len parameter
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
else:
fps = original_fps
cap.release()
return {
'width': original_width,
'height': original_height,
'fps': fps,
'original_fps': original_fps,
'frame_count': frame_count,
'total_frames': total_frames
}
def process_frame(frame, max_res):
"""Process a single frame to the desired resolution."""
if max_res > 0:
h, w = frame.shape[:2]
scale = min(max_res / w, max_res / h)
if scale < 1:
new_w, new_h = int(w * scale), int(h * scale)
frame = cv2.resize(frame, (new_w, new_h))
return frame
def read_video_frames_chunked(video_path, max_len=-1, target_fps=-1, max_res=-1, chunk_size=32):
"""Read video frames in chunks to avoid loading the entire video into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Determine actual number of frames to process
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
# Calculate frame skip if downsampling fps
if target_fps < original_fps:
skip = int(round(original_fps / target_fps)) - 1
else:
skip = 0
else:
fps = original_fps
skip = 0
frame_idx = 0
processed_count = 0
while processed_count < frame_count:
frames_chunk = []
# Read frames up to chunk size or remaining frames
chunk_limit = min(chunk_size, frame_count - processed_count)
while len(frames_chunk) < chunk_limit:
ret, frame = cap.read()
if not ret:
break
# Process frame if we're not skipping it
if frame_idx % (skip + 1) == 0:
# Convert from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize if necessary
frame = process_frame(frame, max_res)
frames_chunk.append(frame)
processed_count += 1
if processed_count >= frame_count:
break
frame_idx += 1
if frames_chunk:
yield frames_chunk, fps
if processed_count >= frame_count or len(frames_chunk) < chunk_limit:
break
cap.release()
@spaces.GPU(enable_queue=True)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_name = os.path.basename(input_video)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
# Get video info first
video_info = get_video_info(input_video, max_len, target_fps)
fps = video_info['fps']
frame_count = video_info['frame_count']
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
# Process the video in chunks to manage memory
chunk_size = 32 # Adjust based on available memory
# We'll collect depths as we go to calculate global min/max
all_depths = []
all_processed_frames = []
# First pass to collect frames and depths
frame_idx = 0
for frames_chunk, fps in read_video_frames_chunked(input_video, max_len, target_fps, max_res, chunk_size):
print(f"Processing chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
# Process this chunk of frames
depths, _ = video_depth_anything.infer_video_depth(frames_chunk, fps, input_size=input_size, device=DEVICE)
# Store results (we'll need both for the output videos)
all_processed_frames.extend(frames_chunk)
all_depths.extend(depths)
frame_idx += len(frames_chunk)
# Free memory
gc.collect()
torch.cuda.empty_cache()
# Calculate global min/max for depth normalization
depths_array = np.array(all_depths)
d_min, d_max = depths_array.min(), depths_array.max()
# Save the preprocessed video and depth visualization
save_video(all_processed_frames, processed_video_path, fps=fps)
save_video(all_depths, depth_vis_path, fps=fps, is_depths=True)
# Free some memory before stitching
del all_processed_frames
gc.collect()
# Process stitched video if requested
stitched_video_path = None
if stitch:
# Use only the first 20 characters of the base name for the output filename
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
# For stitching: read the original video in full resolution and stitch frames one by one
stitched_frames = []
# Process in chunks for memory efficiency
frame_idx = 0
for frames_chunk, _ in read_video_frames_chunked(input_video, max_len, target_fps, -1, chunk_size): # No max_res for original resolution
print(f"Stitching chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
# Process each frame in the chunk
for i, rgb_full in enumerate(frames_chunk):
depth_idx = frame_idx + i
if depth_idx >= len(all_depths):
break
depth_frame = all_depths[depth_idx]
# Normalize the depth frame
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization
if grayscale:
if convert_from_color:
# Convert from color to grayscale
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
# Directly use grayscale
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
# Use color visualization
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures odd kernel size
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize depth visualization to match original resolution
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate RGB and depth
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
stitched_frames.append(stitched)
frame_idx += len(frames_chunk)
# Free memory after processing each chunk
gc.collect()
# Save the stitched video
save_video(stitched_frames, stitched_video_path, fps=fps)
# Merge audio from the input video
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", input_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
# Free memory
del stitched_frames
# Clean up
del all_depths
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples=False,
cache_mode="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue(max_size=2).launch()