Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,306 Bytes
55ac26c 28da247 55ac26c 19217bc 28da247 45b851e 9c84c70 6922ee3 8265d02 55ac26c 45b851e 55ac26c 9c84c70 55ac26c e003b4c 55ac26c bd5d002 55ac26c 033fb37 55ac26c 28da247 55ac26c 9c84c70 55ac26c 19217bc 55ac26c 9c84c70 239b735 864aa62 55ac26c 45b851e 7d955cd 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 55ac26c 9c84c70 ec38b07 e003b4c 46294a9 55ac26c 45b851e 28da247 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 033fb37 28da247 6916b74 45b851e 6916b74 45b851e 6916b74 45b851e 6916b74 9c84c70 6916b74 45b851e 6916b74 45b851e 6916b74 9c84c70 6916b74 45b851e 6916b74 9c84c70 6916b74 45b851e 6916b74 bddb8a1 45b851e 28da247 55ac26c 28da247 19217bc 55ac26c 9c84c70 4423b71 55ac26c 28da247 19217bc 55ac26c 28da247 9c84c70 28da247 9c84c70 2d7c3b2 28da247 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 2d7c3b2 6d6b641 55ac26c 19217bc 55ac26c ec38b07 28da247 55ac26c 19217bc 55ac26c 7d955cd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 |
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib
import subprocess
import sys
import spaces
from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import save_video
from huggingface_hub import hf_hub_download
# Examples for the Gradio Demo.
examples = [
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]
# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
# Model configuration for different encoder variants.
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
'vits': 'Small',
'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]
# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
filename=f"video_depth_anything_{encoder}.pth",
repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()
title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
def get_video_info(video_path, max_len=-1, target_fps=-1):
"""Extract video information without loading all frames into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
# Get video properties
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Adjust based on max_len parameter
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
else:
fps = original_fps
cap.release()
return {
'width': original_width,
'height': original_height,
'fps': fps,
'original_fps': original_fps,
'frame_count': frame_count,
'total_frames': total_frames
}
def process_frame(frame, max_res):
"""Process a single frame to the desired resolution."""
if max_res > 0:
h, w = frame.shape[:2]
scale = min(max_res / w, max_res / h)
if scale < 1:
new_w, new_h = int(w * scale), int(h * scale)
frame = cv2.resize(frame, (new_w, new_h))
return frame
def read_video_frames_chunked(video_path, max_len=-1, target_fps=-1, max_res=-1, chunk_size=32):
"""Read video frames in chunks to avoid loading the entire video into memory."""
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
raise ValueError(f"Could not open video file: {video_path}")
original_fps = cap.get(cv2.CAP_PROP_FPS)
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
# Determine actual number of frames to process
if max_len > 0 and max_len < total_frames:
frame_count = max_len
else:
frame_count = total_frames
# Use target_fps if specified
if target_fps > 0:
fps = target_fps
# Calculate frame skip if downsampling fps
if target_fps < original_fps:
skip = int(round(original_fps / target_fps)) - 1
else:
skip = 0
else:
fps = original_fps
skip = 0
frame_idx = 0
processed_count = 0
while processed_count < frame_count:
frames_chunk = []
# Read frames up to chunk size or remaining frames
chunk_limit = min(chunk_size, frame_count - processed_count)
while len(frames_chunk) < chunk_limit:
ret, frame = cap.read()
if not ret:
break
# Process frame if we're not skipping it
if frame_idx % (skip + 1) == 0:
# Convert from BGR to RGB
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# Resize if necessary
frame = process_frame(frame, max_res)
frames_chunk.append(frame)
processed_count += 1
if processed_count >= frame_count:
break
frame_idx += 1
if frames_chunk:
yield frames_chunk, fps
if processed_count >= frame_count or len(frames_chunk) < chunk_limit:
break
cap.release()
@spaces.GPU(enable_queue=True)
def infer_video_depth(
input_video: str,
max_len: int = -1,
target_fps: int = -1,
max_res: int = 1280,
stitch: bool = True,
grayscale: bool = True,
convert_from_color: bool = True,
blur: float = 0.3,
output_dir: str = './outputs',
input_size: int = 518,
):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
video_name = os.path.basename(input_video)
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
# Get video info first
video_info = get_video_info(input_video, max_len, target_fps)
fps = video_info['fps']
frame_count = video_info['frame_count']
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
# Process the video in chunks to manage memory
chunk_size = 32 # Adjust based on available memory
# We'll collect depths as we go to calculate global min/max
all_depths = []
all_processed_frames = []
# First pass to collect frames and depths
frame_idx = 0
for frames_chunk, fps in read_video_frames_chunked(input_video, max_len, target_fps, max_res, chunk_size):
print(f"Processing chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
# Process this chunk of frames
depths, _ = video_depth_anything.infer_video_depth(frames_chunk, fps, input_size=input_size, device=DEVICE)
# Store results (we'll need both for the output videos)
all_processed_frames.extend(frames_chunk)
all_depths.extend(depths)
frame_idx += len(frames_chunk)
# Free memory
gc.collect()
torch.cuda.empty_cache()
# Calculate global min/max for depth normalization
depths_array = np.array(all_depths)
d_min, d_max = depths_array.min(), depths_array.max()
# Save the preprocessed video and depth visualization
save_video(all_processed_frames, processed_video_path, fps=fps)
save_video(all_depths, depth_vis_path, fps=fps, is_depths=True)
# Free some memory before stitching
del all_processed_frames
gc.collect()
# Process stitched video if requested
stitched_video_path = None
if stitch:
# Use only the first 20 characters of the base name for the output filename
base_name = os.path.splitext(video_name)[0]
short_name = base_name[:20]
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
# For stitching: read the original video in full resolution and stitch frames one by one
stitched_frames = []
# Process in chunks for memory efficiency
frame_idx = 0
for frames_chunk, _ in read_video_frames_chunked(input_video, max_len, target_fps, -1, chunk_size): # No max_res for original resolution
print(f"Stitching chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
# Process each frame in the chunk
for i, rgb_full in enumerate(frames_chunk):
depth_idx = frame_idx + i
if depth_idx >= len(all_depths):
break
depth_frame = all_depths[depth_idx]
# Normalize the depth frame
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
# Generate depth visualization
if grayscale:
if convert_from_color:
# Convert from color to grayscale
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
depth_vis = np.stack([depth_gray] * 3, axis=-1)
else:
# Directly use grayscale
depth_vis = np.stack([depth_norm] * 3, axis=-1)
else:
# Use color visualization
cmap = matplotlib.colormaps.get_cmap("inferno")
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
# Apply blur if requested
if blur > 0:
kernel_size = int(blur * 20) * 2 + 1 # Ensures odd kernel size
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
# Resize depth visualization to match original resolution
H_full, W_full = rgb_full.shape[:2]
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
# Concatenate RGB and depth
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
stitched_frames.append(stitched)
frame_idx += len(frames_chunk)
# Free memory after processing each chunk
gc.collect()
# Save the stitched video
save_video(stitched_frames, stitched_video_path, fps=fps)
# Merge audio from the input video
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
cmd = [
"ffmpeg",
"-y",
"-i", stitched_video_path,
"-i", input_video,
"-c:v", "copy",
"-c:a", "aac",
"-map", "0:v:0",
"-map", "1:a:0?",
"-shortest",
temp_audio_path
]
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
os.replace(temp_audio_path, stitched_video_path)
# Free memory
del stitched_frames
# Clean up
del all_depths
gc.collect()
torch.cuda.empty_cache()
return [processed_video_path, depth_vis_path, stitched_video_path]
def construct_demo():
with gr.Blocks(analytics_enabled=False) as demo:
gr.Markdown(title)
gr.Markdown(description)
gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
with gr.Row(equal_height=True):
with gr.Column(scale=1):
# Video input component for file upload.
input_video = gr.Video(label="Input Video")
with gr.Column(scale=2):
with gr.Row(equal_height=True):
processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
with gr.Row(equal_height=True):
with gr.Column(scale=1):
with gr.Accordion("Advanced Settings", open=False):
max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
generate_btn = gr.Button("Generate")
with gr.Column(scale=2):
pass
gr.Examples(
examples=examples,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
fn=infer_video_depth,
cache_examples=False,
cache_mode="lazy",
)
generate_btn.click(
fn=infer_video_depth,
inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
outputs=[processed_video, depth_vis_video, stitched_video],
)
return demo
if __name__ == "__main__":
demo = construct_demo()
demo.queue(max_size=2).launch() |