File size: 15,306 Bytes
55ac26c
28da247
55ac26c
19217bc
28da247
 
 
45b851e
9c84c70
6922ee3
8265d02
55ac26c
 
45b851e
55ac26c
 
9c84c70
55ac26c
e003b4c
 
 
 
 
 
 
 
 
 
 
 
 
55ac26c
 
bd5d002
 
55ac26c
033fb37
55ac26c
 
 
 
 
 
 
 
28da247
55ac26c
 
9c84c70
55ac26c
19217bc
 
 
 
 
55ac26c
 
 
9c84c70
239b735
864aa62
55ac26c
45b851e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d955cd
6916b74
 
45b851e
 
 
 
 
6916b74
45b851e
6916b74
 
 
45b851e
6916b74
 
 
 
 
 
 
 
 
 
 
 
 
45b851e
 
6916b74
 
 
 
 
 
45b851e
6916b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b851e
 
 
 
55ac26c
 
 
 
 
9c84c70
 
ec38b07
e003b4c
46294a9
 
55ac26c
 
 
45b851e
 
28da247
 
45b851e
 
 
 
 
 
 
 
6916b74
 
45b851e
6916b74
 
 
45b851e
6916b74
 
 
 
45b851e
6916b74
 
 
 
 
 
45b851e
6916b74
45b851e
6916b74
 
 
 
 
 
 
 
 
 
 
45b851e
6916b74
 
 
45b851e
 
033fb37
28da247
6916b74
45b851e
 
 
 
6916b74
 
45b851e
6916b74
 
 
 
45b851e
6916b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c84c70
6916b74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
45b851e
6916b74
45b851e
6916b74
 
9c84c70
6916b74
 
45b851e
6916b74
9c84c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6916b74
 
 
45b851e
 
6916b74
bddb8a1
 
45b851e
28da247
55ac26c
 
 
 
 
28da247
19217bc
55ac26c
 
9c84c70
4423b71
55ac26c
 
28da247
 
 
19217bc
55ac26c
 
28da247
9c84c70
 
28da247
9c84c70
 
 
2d7c3b2
28da247
55ac26c
 
19217bc
55ac26c
 
ec38b07
28da247
55ac26c
2d7c3b2
6d6b641
55ac26c
19217bc
55ac26c
 
ec38b07
28da247
55ac26c
19217bc
55ac26c
 
 
 
7d955cd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
import os
import gc
import torch
import cv2
import gradio as gr
import numpy as np
import matplotlib.cm as cm
import matplotlib
import subprocess
import sys
import spaces

from video_depth_anything.video_depth import VideoDepthAnything
from utils.dc_utils import save_video
from huggingface_hub import hf_hub_download

# Examples for the Gradio Demo.
examples = [
    ['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/gorilla_01.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/davis_rollercoaster.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/Tokyo-Walk_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/4158877-uhd_3840_2160_30fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/4511004-uhd_3840_2160_24fps_rgb.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/1753029-hd_1920_1080_30fps.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/davis_burnout.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/example_5473765-l.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/Istanbul-26920.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/obj_1.mp4', -1, -1, 1280, True, True, True, 0.3],
    ['assets/example_videos/sheep_cut1.mp4', -1, -1, 1280, True, True, True, 0.3],
]

# Use GPU if available; otherwise, use CPU.
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'

# Model configuration for different encoder variants.
model_configs = {
    'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
    'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
}
encoder2name = {
    'vits': 'Small',
    'vitl': 'Large',
}
encoder = 'vitl'
model_name = encoder2name[encoder]

# Initialize the model.
video_depth_anything = VideoDepthAnything(**model_configs[encoder])
filepath = hf_hub_download(
    repo_id=f"depth-anything/Video-Depth-Anything-{model_name}",
    filename=f"video_depth_anything_{encoder}.pth",
    repo_type="model"
)
video_depth_anything.load_state_dict(torch.load(filepath, map_location='cpu'))
video_depth_anything = video_depth_anything.to(DEVICE).eval()

title = "# Video Depth Anything + RGBD sbs output"
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""

def get_video_info(video_path, max_len=-1, target_fps=-1):
    """Extract video information without loading all frames into memory."""
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise ValueError(f"Could not open video file: {video_path}")
    
    # Get video properties
    original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
    original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Adjust based on max_len parameter
    if max_len > 0 and max_len < total_frames:
        frame_count = max_len
    else:
        frame_count = total_frames
    
    # Use target_fps if specified
    if target_fps > 0:
        fps = target_fps
    else:
        fps = original_fps
    
    cap.release()
    
    return {
        'width': original_width,
        'height': original_height,
        'fps': fps,
        'original_fps': original_fps,
        'frame_count': frame_count,
        'total_frames': total_frames
    }

def process_frame(frame, max_res):
    """Process a single frame to the desired resolution."""
    if max_res > 0:
        h, w = frame.shape[:2]
        scale = min(max_res / w, max_res / h)
        if scale < 1:
            new_w, new_h = int(w * scale), int(h * scale)
            frame = cv2.resize(frame, (new_w, new_h))
    return frame

def read_video_frames_chunked(video_path, max_len=-1, target_fps=-1, max_res=-1, chunk_size=32):
    """Read video frames in chunks to avoid loading the entire video into memory."""
    cap = cv2.VideoCapture(video_path)
    if not cap.isOpened():
        raise ValueError(f"Could not open video file: {video_path}")
    
    original_fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    
    # Determine actual number of frames to process
    if max_len > 0 and max_len < total_frames:
        frame_count = max_len
    else:
        frame_count = total_frames
    
    # Use target_fps if specified
    if target_fps > 0:
        fps = target_fps
        # Calculate frame skip if downsampling fps
        if target_fps < original_fps:
            skip = int(round(original_fps / target_fps)) - 1
        else:
            skip = 0
    else:
        fps = original_fps
        skip = 0
    
    frame_idx = 0
    processed_count = 0
    
    while processed_count < frame_count:
        frames_chunk = []
        # Read frames up to chunk size or remaining frames
        chunk_limit = min(chunk_size, frame_count - processed_count)
        
        while len(frames_chunk) < chunk_limit:
            ret, frame = cap.read()
            if not ret:
                break
                
            # Process frame if we're not skipping it
            if frame_idx % (skip + 1) == 0:
                # Convert from BGR to RGB
                frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
                # Resize if necessary
                frame = process_frame(frame, max_res)
                frames_chunk.append(frame)
                processed_count += 1
                
                if processed_count >= frame_count:
                    break
                    
            frame_idx += 1
        
        if frames_chunk:
            yield frames_chunk, fps
        
        if processed_count >= frame_count or len(frames_chunk) < chunk_limit:
            break
    
    cap.release()

@spaces.GPU(enable_queue=True)
def infer_video_depth(
    input_video: str,
    max_len: int = -1,
    target_fps: int = -1,
    max_res: int = 1280,
    stitch: bool = True,
    grayscale: bool = True,
    convert_from_color: bool = True,
    blur: float = 0.3,
    output_dir: str = './outputs',
    input_size: int = 518,
):
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)
    
    video_name = os.path.basename(input_video)
    processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
    depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
    
    # Get video info first
    video_info = get_video_info(input_video, max_len, target_fps)
    fps = video_info['fps']
    frame_count = video_info['frame_count']
    
    print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
    
    # Process the video in chunks to manage memory
    chunk_size = 32  # Adjust based on available memory
    
    # We'll collect depths as we go to calculate global min/max
    all_depths = []
    all_processed_frames = []
    
    # First pass to collect frames and depths
    frame_idx = 0
    for frames_chunk, fps in read_video_frames_chunked(input_video, max_len, target_fps, max_res, chunk_size):
        print(f"Processing chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
        
        # Process this chunk of frames
        depths, _ = video_depth_anything.infer_video_depth(frames_chunk, fps, input_size=input_size, device=DEVICE)
        
        # Store results (we'll need both for the output videos)
        all_processed_frames.extend(frames_chunk)
        all_depths.extend(depths)
        
        frame_idx += len(frames_chunk)
        
        # Free memory
        gc.collect()
        torch.cuda.empty_cache()
    
    # Calculate global min/max for depth normalization
    depths_array = np.array(all_depths)
    d_min, d_max = depths_array.min(), depths_array.max()
    
    # Save the preprocessed video and depth visualization
    save_video(all_processed_frames, processed_video_path, fps=fps)
    save_video(all_depths, depth_vis_path, fps=fps, is_depths=True)
    
    # Free some memory before stitching
    del all_processed_frames
    gc.collect()
    
    # Process stitched video if requested
    stitched_video_path = None
    if stitch:
        # Use only the first 20 characters of the base name for the output filename
        base_name = os.path.splitext(video_name)[0]
        short_name = base_name[:20]
        stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
        
        # For stitching: read the original video in full resolution and stitch frames one by one
        stitched_frames = []
        
        # Process in chunks for memory efficiency
        frame_idx = 0
        for frames_chunk, _ in read_video_frames_chunked(input_video, max_len, target_fps, -1, chunk_size):  # No max_res for original resolution
            print(f"Stitching chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
            
            # Process each frame in the chunk
            for i, rgb_full in enumerate(frames_chunk):
                depth_idx = frame_idx + i
                if depth_idx >= len(all_depths):
                    break
                    
                depth_frame = all_depths[depth_idx]
                
                # Normalize the depth frame
                depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
                
                # Generate depth visualization
                if grayscale:
                    if convert_from_color:
                        # Convert from color to grayscale
                        cmap = matplotlib.colormaps.get_cmap("inferno")
                        depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
                        depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
                        depth_vis = np.stack([depth_gray] * 3, axis=-1)
                    else:
                        # Directly use grayscale
                        depth_vis = np.stack([depth_norm] * 3, axis=-1)
                else:
                    # Use color visualization
                    cmap = matplotlib.colormaps.get_cmap("inferno")
                    depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
                
                # Apply blur if requested
                if blur > 0:
                    kernel_size = int(blur * 20) * 2 + 1  # Ensures odd kernel size
                    depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
                
                # Resize depth visualization to match original resolution
                H_full, W_full = rgb_full.shape[:2]
                depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
                
                # Concatenate RGB and depth
                stitched = cv2.hconcat([rgb_full, depth_vis_resized])
                stitched_frames.append(stitched)
            
            frame_idx += len(frames_chunk)
            
            # Free memory after processing each chunk
            gc.collect()
        
        # Save the stitched video
        save_video(stitched_frames, stitched_video_path, fps=fps)
        
        # Merge audio from the input video
        temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
        cmd = [
            "ffmpeg",
            "-y",
            "-i", stitched_video_path,
            "-i", input_video,
            "-c:v", "copy",
            "-c:a", "aac",
            "-map", "0:v:0",
            "-map", "1:a:0?",
            "-shortest",
            temp_audio_path
        ]
        subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        os.replace(temp_audio_path, stitched_video_path)
        
        # Free memory
        del stitched_frames
    
    # Clean up
    del all_depths
    gc.collect()
    torch.cuda.empty_cache()
    
    return [processed_video_path, depth_vis_path, stitched_video_path]

def construct_demo():
    with gr.Blocks(analytics_enabled=False) as demo:
        gr.Markdown(title)
        gr.Markdown(description)
        gr.Markdown("### If you find this work useful, please help ⭐ the [Github Repo](https://github.com/DepthAnything/Video-Depth-Anything). Thanks for your attention!")
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                # Video input component for file upload.
                input_video = gr.Video(label="Input Video")
            with gr.Column(scale=2):
                with gr.Row(equal_height=True):
                    processed_video = gr.Video(label="Preprocessed Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    depth_vis_video = gr.Video(label="Generated Depth Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    stitched_video = gr.Video(label="Stitched RGBD Video", interactive=False, autoplay=True, loop=True, show_share_button=True, scale=5)
                    
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                with gr.Accordion("Advanced Settings", open=False):
                    max_len = gr.Slider(label="Max process length", minimum=-1, maximum=1000, value=-1, step=1)
                    target_fps = gr.Slider(label="Target FPS", minimum=-1, maximum=30, value=-1, step=1)
                    max_res = gr.Slider(label="Max side resolution", minimum=480, maximum=1920, value=1280, step=1)
                    stitch_option = gr.Checkbox(label="Stitch RGB & Depth Videos", value=True)
                    grayscale_option = gr.Checkbox(label="Output Depth as Grayscale", value=True)
                    convert_from_color_option = gr.Checkbox(label="Convert Grayscale from Color", value=True)
                    blur_slider = gr.Slider(minimum=0, maximum=1, step=0.01, label="Depth Blur (can reduce edge artifacts on display)", value=0.3)
                generate_btn = gr.Button("Generate")
            with gr.Column(scale=2):
                pass
        
        gr.Examples(
            examples=examples,
            inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
            outputs=[processed_video, depth_vis_video, stitched_video],
            fn=infer_video_depth,
            cache_examples=False,
            cache_mode="lazy",
        )
        
        generate_btn.click(
            fn=infer_video_depth,
            inputs=[input_video, max_len, target_fps, max_res, stitch_option, grayscale_option, convert_from_color_option, blur_slider],
            outputs=[processed_video, depth_vis_video, stitched_video],
        )
    
    return demo

if __name__ == "__main__":
    demo = construct_demo()
    demo.queue(max_size=2).launch()