player_cards / app.py
nesticot's picture
Update app.py
a711b32
raw
history blame
25.1 kB
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
#from scipy import stats
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
#import plotly.express as px
#!pip install chart_studio
# import chart_studio.tools as tls
#from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from datetime import date
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
#from urllib.request import urlopen
import json
from datetime import date, timedelta
#import dataframe_image as dfi
#from os import listdir
#from os.path import isfile, join
import datetime
import seaborn as sns
import os
import calendar
#from IPython.display import display, HTML
import matplotlib.image as mpimg
#from skimage import io
#import difflib
from datetime import datetime
import pytz
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
# import yfpy
# from yfpy.query import YahooFantasySportsQuery
# import yahoo_oauth
import json
#import openpyxl
#from sklearn import preprocessing
from PIL import Image
import logging
import matplotlib.patches as patches
from matplotlib.patches import Rectangle
from matplotlib.font_manager import FontProperties
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
import requests
#import pickle
import pandas as pd
# # Loop over the counter and format the API call
r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01')
schedule = r.json()
def flatten(t):
return [item for sublist in t for item in sublist]
game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))])
schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away})
schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens')
schedule_df.head()
team_abv = pd.read_csv('team_abv.csv')
yahoo_weeks = pd.read_csv('yahoo_weeks.csv')
#yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int)
yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start'])
yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End'])
yahoo_weeks.head(5)
def highlight_cols(s):
color = '#C2FEE9'
return 'background-color: %s' % color
def highlight_cells(val):
color = 'white' if val == ' ' else ''
return 'background-color: {}'.format(color)
import matplotlib.pyplot as plt
import matplotlib.colors
cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"])
cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"])
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"])
schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away'])
schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home'])
schedule_df['away_sym'] = '@'
schedule_df['home_sym'] = 'vs'
if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'):
standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1])
standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv')
standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0])
standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0')
#standings_df = standings_df.replace('St. Louis Blues','St Louis Blues')
standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int)
standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int)
standings_df['GF_Rank'] = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65
standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65
standings_df.Team = standings_df.Team.str.strip('*')
standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name')
schedule_stack = pd.DataFrame()
schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date']))
schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home'])
schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home'])
schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym'])
schedule_stack['team_opponent'] = list(schedule_df['team_name_home'])+list(schedule_df['team_name'])
schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv'])
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y'))
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y'))
list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])]
b2b_list = [0] + [x.days for x in new_list]
b2b_list = [1 if x==1 else 0 for x in b2b_list]
test = list(schedule_stack.groupby(by='date').count()['team'])
offnight = [1 if x<15 else 0 for x in test]
offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True)
schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right')
schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True)
schedule_stack['b2b'] = b2b_list
schedule_stack.date = pd.to_datetime(schedule_stack.date)
away_b2b = []
home_b2b = []
for i in range(0,len(schedule_stack)):
away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0])
schedule_stack['away_b2b'] = away_b2b
schedule_stack['home_b2b'] = home_b2b
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' &#128564;')
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'')
schedule_stack.head()
FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc')
data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
total_list = []
for x in data_r['fantasy_content']['league']['players']:
single_list = []
single_list.append(int(x['player']['player_id']))
single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
single_list.append(x['player']['name']['full'])
single_list.append(x['player']['name']['first'])
single_list.append(x['player']['name']['last'])
single_list.append(x['player']['draft_analysis']['average_pick'])
single_list.append(x['player']['average_auction_cost'])
single_list.append(x['player']['display_position'])
single_list.append(x['player']['editorial_team_abbr'])
if 'value' in x['player']['percent_owned']:
single_list.append(x['player']['percent_owned']['value']/100)
else:
single_list.append(0)
total_list.append(single_list)
df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned'])
week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict()
from shiny import ui, render, App
import matplotlib.image as mpimg
# app_ui = ui.page_fluid(
# # ui.output_plot("plot"),
# #ui.h2('MLB Batter Launch Angle vs Exit Velocity'),
# ui.layout_sidebar(
# ui.panel_sidebar(
# ui.input_select("id", "Select Batter",batter_dict),
# ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'})))
# ,
# ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")),
# #ui.download_button('test','Download'),
# )
app_ui = ui.page_fluid(ui.layout_sidebar(
# Available themes:
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux,
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate,
# solar, spacelab, superhero, united, vapor, yeti, zephyr
ui.panel_sidebar(
ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1),
ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1),
ui.input_switch("a_d_id", "Ascending?"),
#ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1),
ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)),
ui.output_table("result"),width=3),
ui.panel_main(ui.tags.h3(""),
ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")),
#ui.tags.h2("Fantasy Hockey Schedule Summary"),
ui.tags.h5("Created By: @TJStats, Data: NHL"),
ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")),
ui.output_table("schedule_result"),
ui.tags.h5('Legend'),
ui.output_table("schedule_result_legend"),
ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'),
ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') )
))
# ui.row(
# ui.column(
# 3,
# ui.input_date("x", "Date input"),),
# ui.column(
# 1,
# ui.input_select("level_id", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_batters")),
# ui.nav(
# "Pitchers",
# ui.row(
# ui.column(
# 3,
# ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911),
# ),
# ui.column(
# 1,
# ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)),
# ui.column(
# 3,
# ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)),
# ui.column(
# 2,
# ui.input_numeric("n_pitch", "Rolling Window Size", value=50)),
# ),
# ui.output_table("result_pitchers")),
# )
# )
# )
from urllib.request import Request, urlopen
# importing OpenCV(cv2) module
def server(input, output, session):
@output
@render.text
def txt():
week_set = int(input.week_id())
if week_set != 0:
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
else:
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}'
else:
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}'
else:
if input.date_range_id()[0].year != input.date_range_id()[1].year:
return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
else:
if input.date_range_id()[0].month != input.date_range_id()[1].month:
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}'
else:
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}'
@output
@render.text
def txt_title():
week_set = int(input.week_id())
if week_set != 0:
return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}'
else:
return f'Fantasy Hockey Schedule Summary'
@output
@render.table
def result():
#print(yahoo_weeks)
return yahoo_weeks
@output
@render.table
def schedule_result():
week_set = int(input.week_id())
print(week_set)
if week_set == 0:
start_point = input.date_range_id()[0]
end_point = input.date_range_id()[1]
else:
start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0]
end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0]
sort_value='Score'
ascend=False
weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)]
date_list = pd.date_range(start_point,end_point,freq='d')
test_list = [[]] * len(date_list)
for i in range(0,len(date_list)):
test_list[i] = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left')
test_list[i] = test_list[i].fillna("")
test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b']
test_df = pd.DataFrame()
test_df['Team'] = list(team_abv['team_abv'])
test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv']
test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight']
test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b']
gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank'])
ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank'])
#games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))])
games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b'])
team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1
test_df['Score'] = team_score
cols = test_df.columns.tolist();
L = len(cols)
test_df = test_df[cols[4:]+cols[0:4]]
#return test_df#[cols[4:]+cols[0:4]]
test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend)
for i in range(0,len(date_list)):
test_df[calendar.day_name[date_list[i].weekday()]+'<br>'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text']
row = ['']*L
for x in test_df[test_df.columns[L:]]:
row.append(int(sum(test_df[x]!=" ")/2))
test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id())
test_df.loc[32] = row
#test_df_html = HTML( test_df.to_html().replace("\\n","<br>") )
offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]]
test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index()
test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list])))
test_df_style = test_df_style.applymap(highlight_cells)
test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0])))
test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2])))
test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3])))
test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4])))
test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1)
test_df_style = test_df_style.set_properties(
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties(
**{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:])))
test_df_style = test_df_style.format(
'{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L]))
test_df_style = test_df_style.format(
'{:.1f}',subset=(test_df.index[:-1],test_df.columns[0]))
print('made it to teh end')
return test_df_style
#return exit_velo_df_codes_summ_time_style_set
# @output
# @render.plot(alt="A histogram")
# def plot_pitch():
# p
@output
@render.table
def schedule_result_legend():
off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. &#128564;'},index=[0])
#off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0])))
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties(
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties(
**{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties(
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([
{'selector': 'thead', 'props': [('display', 'none')]}
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties(
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])))
return off_b2b_df_style
app = App(app_ui, server)