Spaces:
Running
Running
import requests | |
import pandas as pd | |
import seaborn as sns | |
import matplotlib.pyplot as plt | |
from matplotlib.pyplot import figure | |
from matplotlib.offsetbox import OffsetImage, AnnotationBbox | |
#from scipy import stats | |
import matplotlib.lines as mlines | |
import matplotlib.transforms as mtransforms | |
import numpy as np | |
#import plotly.express as px | |
#!pip install chart_studio | |
# import chart_studio.tools as tls | |
#from bs4 import BeautifulSoup | |
import matplotlib.pyplot as plt | |
import numpy as np | |
import matplotlib.font_manager as font_manager | |
from datetime import datetime | |
import pytz | |
from datetime import date | |
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y') | |
# Configure Notebook | |
#%matplotlib inline | |
plt.style.use('fivethirtyeight') | |
sns.set_context("notebook") | |
import warnings | |
warnings.filterwarnings('ignore') | |
#from urllib.request import urlopen | |
import json | |
from datetime import date, timedelta | |
#import dataframe_image as dfi | |
#from os import listdir | |
#from os.path import isfile, join | |
import datetime | |
import seaborn as sns | |
import os | |
import calendar | |
#from IPython.display import display, HTML | |
import matplotlib.image as mpimg | |
#from skimage import io | |
#import difflib | |
from datetime import datetime | |
import pytz | |
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y') | |
# Configure Notebook | |
#%matplotlib inline | |
plt.style.use('fivethirtyeight') | |
sns.set_context("notebook") | |
import warnings | |
warnings.filterwarnings('ignore') | |
# import yfpy | |
# from yfpy.query import YahooFantasySportsQuery | |
# import yahoo_oauth | |
import json | |
#import openpyxl | |
#from sklearn import preprocessing | |
from PIL import Image | |
import logging | |
import matplotlib.patches as patches | |
from matplotlib.patches import Rectangle | |
from matplotlib.font_manager import FontProperties | |
from matplotlib.offsetbox import OffsetImage, AnnotationBbox | |
import requests | |
#import pickle | |
import pandas as pd | |
# # Loop over the counter and format the API call | |
r = requests.get('https://statsapi.web.nhl.com/api/v1/schedule?startDate=2023-10-01&endDate=2024-06-01') | |
schedule = r.json() | |
def flatten(t): | |
return [item for sublist in t for item in sublist] | |
game_id = flatten([[x['gamePk'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) | |
game_date = flatten([[x['gameDate'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) | |
game_home = flatten([[x['teams']['home']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) | |
game_away = flatten([[x['teams']['away']['team']['name'] for x in schedule['dates'][y]['games']] for y in range(0,len(schedule['dates']))]) | |
schedule_df = pd.DataFrame(data={'game_id': game_id, 'game_date' : game_date, 'game_home' : game_home, 'game_away' : game_away}) | |
schedule_df.game_date = pd.to_datetime(schedule_df['game_date']).dt.tz_convert(tz='US/Eastern').dt.date | |
schedule_df = schedule_df.replace('Montréal Canadiens','Montreal Canadiens') | |
schedule_df.head() | |
team_abv = pd.read_csv('team_abv.csv') | |
yahoo_weeks = pd.read_csv('yahoo_weeks.csv') | |
#yahoo_weeks['Number'] = yahoo_weeks['Number'].astype(int) | |
yahoo_weeks['Start'] = pd.to_datetime(yahoo_weeks['Start']) | |
yahoo_weeks['End'] = pd.to_datetime(yahoo_weeks['End']) | |
yahoo_weeks.head(5) | |
def highlight_cols(s): | |
color = '#C2FEE9' | |
return 'background-color: %s' % color | |
def highlight_cells(val): | |
color = 'white' if val == ' ' else '' | |
return 'background-color: {}'.format(color) | |
import matplotlib.pyplot as plt | |
import matplotlib.colors | |
cmap_total = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#56B4E9","#FFFFFF","#F0E442"]) | |
cmap_off = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"]) | |
cmap_back = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#56B4E9"]) | |
cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#FFFFFF","#F0E442"]) | |
schedule_df = schedule_df.merge(right=team_abv,left_on='game_away',right_on='team_name',how='inner',suffixes=['','_away']) | |
schedule_df = schedule_df.merge(right=team_abv,left_on='game_home',right_on='team_name',how='inner',suffixes=['','_home']) | |
schedule_df['away_sym'] = '@' | |
schedule_df['home_sym'] = 'vs' | |
if not os.path.isfile('standings/standings_'+str(date.today())+'.csv'): | |
standings_df_old = pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[0].append(pd.read_html('https://www.hockey-reference.com/leagues/NHL_2023_standings.html')[1]) | |
standings_df_old.to_csv('standings/standings_'+str(date.today())+'.csv') | |
standings_df_old = pd.read_csv('standings/standings_'+str(date.today())+'.csv',index_col=[0]) | |
standings_df = standings_df_old[standings_df_old['Unnamed: 0'].str[-8:] != 'Division'].sort_values('Unnamed: 0').reset_index(drop=True).rename(columns={'Unnamed: 0':'Team'})#.drop(columns='Unnamed: 0') | |
#standings_df = standings_df.replace('St. Louis Blues','St Louis Blues') | |
standings_df['GF/GP'] = standings_df['GF'].astype(int)/standings_df['GP'].astype(int) | |
standings_df['GA/GP'] = standings_df['GA'].astype(int)/standings_df['GP'].astype(int) | |
standings_df['GF_Rank'] = standings_df['GF/GP'].rank(ascending=True,method='first')/10-1.65 | |
standings_df['GA_Rank'] = standings_df['GA/GP'].rank(ascending=False,method='first')/10-1.65 | |
standings_df.Team = standings_df.Team.str.strip('*') | |
standings_df = standings_df.merge(right=team_abv,left_on='Team',right_on='team_name') | |
schedule_stack = pd.DataFrame() | |
schedule_stack['date'] = pd.to_datetime(list(schedule_df['game_date'])+list(schedule_df['game_date'])) | |
schedule_stack['team'] = list(schedule_df['team_name'])+list(schedule_df['team_name_home']) | |
schedule_stack['team_abv'] = list(schedule_df['team_abv'])+list(schedule_df['team_abv_home']) | |
schedule_stack['symbol'] = list(schedule_df['away_sym'])+list(schedule_df['home_sym']) | |
schedule_stack['team_opponent'] = list(schedule_df['team_name_home'])+list(schedule_df['team_name']) | |
schedule_stack['team_abv_home'] = list(schedule_df['team_abv_home'])+list(schedule_df['team_abv']) | |
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y')) | |
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y')) | |
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GF_Rank']],left_on='team_abv',right_on='team_abv',how='inner',suffixes=("",'_y')) | |
schedule_stack = schedule_stack.merge(right=standings_df[['team_abv','GA_Rank']],left_on='team_abv_home',right_on='team_abv',how='inner',suffixes=("",'_y')) | |
list_o = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True) | |
new_list = [x - y for x, y in zip(list_o['date'][1:], list_o['date'])] | |
b2b_list = [0] + [x.days for x in new_list] | |
b2b_list = [1 if x==1 else 0 for x in b2b_list] | |
test = list(schedule_stack.groupby(by='date').count()['team']) | |
offnight = [1 if x<15 else 0 for x in test] | |
offnight_df = pd.DataFrame({'date':schedule_stack.sort_values('date').date.unique(),'offnight':offnight}).sort_values('date').reset_index(drop=True) | |
schedule_stack = schedule_stack.merge(right=offnight_df,left_on='date',right_on='date',how='right') | |
schedule_stack = schedule_stack.sort_values(['team','date'],ascending=[True,True]).reset_index(drop=True) | |
schedule_stack['b2b'] = b2b_list | |
schedule_stack.date = pd.to_datetime(schedule_stack.date) | |
away_b2b = [] | |
home_b2b = [] | |
for i in range(0,len(schedule_stack)): | |
away_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team_opponent[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0]) | |
home_b2b.append(schedule_stack[(schedule_stack.date[i]==schedule_stack.date)&(schedule_stack.team[i]==schedule_stack.team)].reset_index(drop=True)['b2b'][0]) | |
schedule_stack['away_b2b'] = away_b2b | |
schedule_stack['home_b2b'] = home_b2b | |
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(1,' 😴') | |
schedule_stack['away_b2b'] = schedule_stack['away_b2b'].replace(0,'') | |
schedule_stack.head() | |
FontProperties(fname='/System/Library/Fonts/Apple Color Emoji.ttc') | |
data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=rank_season;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json() | |
total_list = [] | |
for x in data_r['fantasy_content']['league']['players']: | |
single_list = [] | |
single_list.append(int(x['player']['player_id'])) | |
single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value'])) | |
single_list.append(x['player']['name']['full']) | |
single_list.append(x['player']['name']['first']) | |
single_list.append(x['player']['name']['last']) | |
single_list.append(x['player']['draft_analysis']['average_pick']) | |
single_list.append(x['player']['average_auction_cost']) | |
single_list.append(x['player']['display_position']) | |
single_list.append(x['player']['editorial_team_abbr']) | |
if 'value' in x['player']['percent_owned']: | |
single_list.append(x['player']['percent_owned']['value']/100) | |
else: | |
single_list.append(0) | |
total_list.append(single_list) | |
df_2023 = pd.DataFrame(data=total_list,columns=['player_id','rank_value','full','first','last','average_pick', 'average_cost','display_position','editorial_team_abbr','percent_owned']) | |
week_dict = yahoo_weeks.set_index('Number')['Week'].sort_index().to_dict() | |
from shiny import ui, render, App | |
import matplotlib.image as mpimg | |
# app_ui = ui.page_fluid( | |
# # ui.output_plot("plot"), | |
# #ui.h2('MLB Batter Launch Angle vs Exit Velocity'), | |
# ui.layout_sidebar( | |
# ui.panel_sidebar( | |
# ui.input_select("id", "Select Batter",batter_dict), | |
# ui.input_select("plot_id", "Select Plot",{'scatter':'Scatter Plot','dist':'Distribution Plot'}))) | |
# , | |
# ui.panel_main(ui.output_plot("plot",height = "750px",width="1250px")), | |
# #ui.download_button('test','Download'), | |
# ) | |
app_ui = ui.page_fluid(ui.layout_sidebar( | |
# Available themes: | |
# cerulean, cosmo, cyborg, darkly, flatly, journal, litera, lumen, lux, | |
# materia, minty, morph, pulse, quartz, sandstone, simplex, sketchy, slate, | |
# solar, spacelab, superhero, united, vapor, yeti, zephyr | |
ui.panel_sidebar( | |
ui.input_select("week_id", "Select Week (Set as Season for Custom Date Range)",week_dict,width=1), | |
ui.input_select("sort_id", "Sort Column",['Score','Team','Total','Off-Night','B2B'],width=1), | |
ui.input_switch("a_d_id", "Ascending?"), | |
#ui.input_select("date_id", "Select Date",yahoo_weeks['Week'],width=1), | |
ui.input_date_range("date_range_id", "Date range input",start = datetime.today().date(), end = datetime.today().date() + timedelta(days=6)), | |
ui.output_table("result"),width=3), | |
ui.panel_main(ui.tags.h3(""), | |
ui.div({"style": "font-size:2em;"},ui.output_text("txt_title")), | |
#ui.tags.h2("Fantasy Hockey Schedule Summary"), | |
ui.tags.h5("Created By: @TJStats, Data: NHL"), | |
ui.div({"style": "font-size:1.2em;"},ui.output_text("txt")), | |
ui.output_table("schedule_result"), | |
ui.tags.h5('Legend'), | |
ui.output_table("schedule_result_legend"), | |
ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'), | |
ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') ) | |
)) | |
# ui.row( | |
# ui.column( | |
# 3, | |
# ui.input_date("x", "Date input"),), | |
# ui.column( | |
# 1, | |
# ui.input_select("level_id", "Select Level",level_dict,width=1)), | |
# ui.column( | |
# 3, | |
# ui.input_select("stat_id", "Select Stat",plot_dict_small,width=1)), | |
# ui.column( | |
# 2, | |
# ui.input_numeric("n", "Rolling Window Size", value=50)), | |
# ), | |
# ui.output_table("result_batters")), | |
# ui.nav( | |
# "Pitchers", | |
# ui.row( | |
# ui.column( | |
# 3, | |
# ui.input_select("id_pitch", "Select Pitcher",pitcher_dict,width=1,selected=675911), | |
# ), | |
# ui.column( | |
# 1, | |
# ui.input_select("level_id_pitch", "Select Level",level_dict,width=1)), | |
# ui.column( | |
# 3, | |
# ui.input_select("stat_id_pitch", "Select Stat",plot_dict_small_pitch,width=1)), | |
# ui.column( | |
# 2, | |
# ui.input_numeric("n_pitch", "Rolling Window Size", value=50)), | |
# ), | |
# ui.output_table("result_pitchers")), | |
# ) | |
# ) | |
# ) | |
from urllib.request import Request, urlopen | |
# importing OpenCV(cv2) module | |
def server(input, output, session): | |
def txt(): | |
week_set = int(input.week_id()) | |
if week_set != 0: | |
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['Start'].values[0]).year != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]['End'].values[0]).year: | |
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d, %Y")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}' | |
else: | |
if pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).month != pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).month: | |
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%B %d, %Y")}' | |
else: | |
return f'{pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["Start"].values[0]).strftime("%B %d")} to {pd.to_datetime(yahoo_weeks[yahoo_weeks.Number == week_set]["End"].values[0]).strftime("%d, %Y")}' | |
else: | |
if input.date_range_id()[0].year != input.date_range_id()[1].year: | |
return f'{input.date_range_id()[0].strftime("%B %d, %Y")} to {input.date_range_id()[1].strftime("%B %d, %Y")}' | |
else: | |
if input.date_range_id()[0].month != input.date_range_id()[1].month: | |
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%B %d, %Y")}' | |
else: | |
return f'{input.date_range_id()[0].strftime("%B %d")} to {input.date_range_id()[1].strftime("%d, %Y")}' | |
def txt_title(): | |
week_set = int(input.week_id()) | |
if week_set != 0: | |
return f'Fantasy Hockey Schedule Summary - Yahoo - Week {input.week_id()}' | |
else: | |
return f'Fantasy Hockey Schedule Summary' | |
def result(): | |
#print(yahoo_weeks) | |
return yahoo_weeks | |
def schedule_result(): | |
week_set = int(input.week_id()) | |
print(week_set) | |
if week_set == 0: | |
start_point = input.date_range_id()[0] | |
end_point = input.date_range_id()[1] | |
else: | |
start_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['Start'][0] | |
end_point = yahoo_weeks[yahoo_weeks.Number==week_set].reset_index(drop=True)['End'][0] | |
sort_value='Score' | |
ascend=False | |
weekly_stack = schedule_stack[(schedule_stack['date'].dt.date>=start_point)&(schedule_stack['date'].dt.date<=end_point)] | |
date_list = pd.date_range(start_point,end_point,freq='d') | |
test_list = [[]] * len(date_list) | |
for i in range(0,len(date_list)): | |
test_list[i] = team_abv.merge(right=weekly_stack[weekly_stack['date']==date_list[i]],left_on='team_abv',right_on='team_abv',how='left') | |
test_list[i] = test_list[i].fillna("") | |
test_list[i]['new_text'] = test_list[i]['symbol'] + ' '+ test_list[i]['team_abv_home'] + test_list[i]['away_b2b'] | |
test_df = pd.DataFrame() | |
test_df['Team'] = list(team_abv['team_abv']) | |
test_df['Total'] = test_df.merge(right=weekly_stack.groupby('team_abv')['team_abv'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['team_abv'] | |
test_df['Off-Night'] = test_df.merge(right=weekly_stack.groupby('team_abv').sum()['offnight'],left_on=['Team'],right_index=True,how='left').fillna(0)['offnight'] | |
test_df['B2B']= test_df.merge(right=weekly_stack.groupby('team_abv').sum()['b2b'],left_on=['Team'],right_index=True,how='left').fillna(0)['b2b'] | |
gf_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GF_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GF_Rank']) | |
ga_rank = np.array(test_df.merge(right=weekly_stack.groupby('team_abv').mean()['GA_Rank'],left_on=['Team'],right_index=True,how='left').fillna(0)['GA_Rank']) | |
#games_vs_tired = np.array([float(i)*0.4 for i in list(weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()))]) | |
games_vs_tired = 0.4*np.array(test_df.merge(right=weekly_stack.groupby('team_abv')['away_b2b'].apply(lambda x: x[x != ''].count()),left_on=['Team'],right_index=True,how='left').fillna(0)['away_b2b']) | |
team_score = test_df['Total']+test_df['Off-Night']*0.5+test_df['B2B']*-0.2+games_vs_tired*0.3+gf_rank*0.1+ga_rank*0.1 | |
test_df['Score'] = team_score | |
cols = test_df.columns.tolist(); | |
L = len(cols) | |
test_df = test_df[cols[4:]+cols[0:4]] | |
#return test_df#[cols[4:]+cols[0:4]] | |
test_df = test_df.sort_values(by=[sort_value,'Score'],ascending = ascend) | |
for i in range(0,len(date_list)): | |
test_df[calendar.day_name[date_list[i].weekday()]+'<br>'+str(date_list[i].month)+'-'+'{:02d}'.format(date_list[i].day)] = test_list[i]['new_text'] | |
row = ['']*L | |
for x in test_df[test_df.columns[L:]]: | |
row.append(int(sum(test_df[x]!=" ")/2)) | |
test_df = test_df.sort_values(by=input.sort_id(),ascending=input.a_d_id()) | |
test_df.loc[32] = row | |
#test_df_html = HTML( test_df.to_html().replace("\\n","<br>") ) | |
offnight_list = [True if x <8 else False for x in test_df.iloc[-1][L:]] | |
test_df.style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list]))) | |
test_df_style = test_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),('border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( | |
**{'background-color':'White','index':'White','min-width':'75px'},overwrite=False).set_properties( | |
**{'background-color':'White','index':'White','min-width':'100px'},overwrite=False,subset = ((list(test_df.index[:]),test_df.columns[5:]))).set_table_styles( | |
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( | |
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).hide_index() | |
test_df_style = test_df_style.applymap(highlight_cols,subset = ((list(test_df.index[:-1]),test_df.columns[L:][offnight_list]))) | |
test_df_style = test_df_style.applymap(highlight_cells) | |
test_df_style = test_df_style.background_gradient(cmap=cmap_total,subset = ((list(test_df.index[:-1]),test_df.columns[0]))) | |
test_df_style = test_df_style.background_gradient(cmap=cmap_total,vmin=0,vmax=np.max(test_df.Total[:len(test_df)-1]),subset = ((list(test_df.index[:-1]),test_df.columns[2]))) | |
test_df_style = test_df_style.background_gradient(cmap=cmap_off,subset = ((list(test_df.index[:-1]),test_df.columns[3]))) | |
test_df_style = test_df_style.background_gradient(cmap=cmap_back,subset = ((list(test_df.index[:-1]),test_df.columns[4]))) | |
test_df_style = test_df_style.background_gradient(cmap=cmap_sum,subset = ((list(test_df.index[-1:]),test_df.columns[L:])),axis=1) | |
test_df_style = test_df_style.set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:-1]),test_df.columns[:]))).set_properties( | |
**{'min-width':'85px'},subset = ((list(test_df.index[:-1]),test_df.columns[L:])),overwrite=False).set_properties(**{ | |
'color': 'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(test_df.index[:]),test_df.columns[L:]))) | |
test_df_style = test_df_style.format( | |
'{:.0f}',subset=(test_df.index[:-1],test_df.columns[2:L])) | |
test_df_style = test_df_style.format( | |
'{:.1f}',subset=(test_df.index[:-1],test_df.columns[0])) | |
print('made it to teh end') | |
return test_df_style | |
#return exit_velo_df_codes_summ_time_style_set | |
# @output | |
# @render.plot(alt="A histogram") | |
# def plot_pitch(): | |
# p | |
def schedule_result_legend(): | |
off_b2b_df = pd.DataFrame(data={'off':'Off-Night','b2b':'Tired Opp. 😴'},index=[0]) | |
#off_b2b_df.style.applymap(highlight_cols,subset = ((list(off_b2b_df.index[:-1]),off_b2b_df.columns[0]))) | |
off_b2b_df_style = off_b2b_df.style.set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{ | |
'selector': 'caption', | |
'props': [ | |
('color', ''), | |
('fontname', 'Century Gothic'), | |
('font-size', '20px'), | |
('font-style', 'italic'), | |
('font-weight', ''), | |
('text-align', 'centre'), | |
] | |
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),( | |
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties( | |
**{'background-color':'White','index':'White','min-width':'150px'},overwrite=False).set_table_styles( | |
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles( | |
[{'selector': 'tr', 'props': [('line-height', '20px')]}],overwrite=False).set_properties( | |
**{'Height': '8px'},**{'text-align': 'center'},overwrite=False).set_properties( | |
**{'background-color':'#C2FEE9'},subset=off_b2b_df.columns[0]).set_properties( | |
**{'color':'black'},subset=off_b2b_df.columns[:]).hide_index().set_table_styles([ | |
{'selector': 'thead', 'props': [('display', 'none')]} | |
]).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))).set_properties( | |
**{'min-width':'130'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:])),overwrite=False).set_properties(**{ | |
'color': 'black'},overwrite=False).set_properties( | |
**{'border': '1px black solid !important'},subset = ((list(off_b2b_df.index[:]),off_b2b_df.columns[:]))) | |
return off_b2b_df_style | |
app = App(app_ui, server) |