File size: 10,647 Bytes
7ac65ca
 
 
 
 
e900656
 
 
 
 
 
 
 
 
 
7ac65ca
e900656
 
 
 
7ac65ca
 
 
 
 
 
 
 
 
 
 
1749bff
7ac65ca
 
 
e900656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
53924ae
e900656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac65ca
 
 
 
 
 
 
 
 
 
 
 
e900656
 
 
 
 
 
53924ae
e900656
 
 
 
 
 
 
 
 
 
 
 
53924ae
e900656
 
 
 
 
 
 
 
 
53924ae
e900656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac65ca
e900656
7ac65ca
 
 
 
7f0599f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ac65ca
e900656
 
 
 
 
 
748d401
 
 
 
e900656
 
 
 
 
7ac65ca
 
 
7f0599f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
import sys
sys.path.append('src/blip')
sys.path.append('src/clip')

import clip
import gradio as gr
import hashlib
import math
import numpy as np
import os
import pickle
import torch
import torchvision.transforms as T
import torchvision.transforms.functional as TF

from models.blip import blip_decoder
from PIL import Image
from torch import nn
from torch.nn import functional as F
from tqdm import tqdm

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

print("Loading BLIP model...")
blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large_caption.pth'        
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='large', med_config='./src/blip/configs/med_config.json')
blip_model.eval()
blip_model = blip_model.to(device)

print("Loading CLIP model...")
clip_model_name = 'ViT-L/14' # https://huggingface.co/openai/clip-vit-large-patch14
clip_model, clip_preprocess = clip.load(clip_model_name, device=device)
clip_model.to(device).eval()

chunk_size = 2048
flavor_intermediate_count = 2048


class LabelTable():
    def __init__(self, labels, desc):
        self.labels = labels
        self.embeds = []

        hash = hashlib.sha256(",".join(labels).encode()).hexdigest()

        os.makedirs('./cache', exist_ok=True)
        cache_filepath = f"./cache/{desc}.pkl"
        if desc is not None and os.path.exists(cache_filepath):
            with open(cache_filepath, 'rb') as f:
                data = pickle.load(f)
                if data['hash'] == hash:
                    self.labels = data['labels']
                    self.embeds = data['embeds']

        if len(self.labels) != len(self.embeds):
            self.embeds = []
            chunks = np.array_split(self.labels, max(1, len(self.labels)/chunk_size))
            for chunk in tqdm(chunks, desc=f"Preprocessing {desc}" if desc else None):
                text_tokens = clip.tokenize(chunk).to(device)
                with torch.no_grad():
                    text_features = clip_model.encode_text(text_tokens).float()
                text_features /= text_features.norm(dim=-1, keepdim=True)
                text_features = text_features.half().cpu().numpy()
                for i in range(text_features.shape[0]):
                    self.embeds.append(text_features[i])

            with open(cache_filepath, 'wb') as f:
                pickle.dump({"labels":self.labels, "embeds":self.embeds, "hash":hash}, f)
    
    def _rank(self, image_features, text_embeds, top_count=1):
        top_count = min(top_count, len(text_embeds))
        similarity = torch.zeros((1, len(text_embeds))).to(device)
        text_embeds = torch.stack([torch.from_numpy(t) for t in text_embeds]).float().to(device)
        for i in range(image_features.shape[0]):
            similarity += (image_features[i].unsqueeze(0) @ text_embeds.T).softmax(dim=-1)
        _, top_labels = similarity.cpu().topk(top_count, dim=-1)
        return [top_labels[0][i].numpy() for i in range(top_count)]

    def rank(self, image_features, top_count=1):
        if len(self.labels) <= chunk_size:
            tops = self._rank(image_features, self.embeds, top_count=top_count)
            return [self.labels[i] for i in tops]

        num_chunks = int(math.ceil(len(self.labels)/chunk_size))
        keep_per_chunk = int(chunk_size / num_chunks)

        top_labels, top_embeds = [], []
        for chunk_idx in tqdm(range(num_chunks)):
            start = chunk_idx*chunk_size
            stop = min(start+chunk_size, len(self.embeds))
            tops = self._rank(image_features, self.embeds[start:stop], top_count=keep_per_chunk)
            top_labels.extend([self.labels[start+i] for i in tops])
            top_embeds.extend([self.embeds[start+i] for i in tops])

        tops = self._rank(image_features, top_embeds, top_count=top_count)
        return [top_labels[i] for i in tops]

def generate_caption(pil_image):
    gpu_image = T.Compose([
        T.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=TF.InterpolationMode.BICUBIC),
        T.ToTensor(),
        T.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
    ])(pil_image).unsqueeze(0).to(device)

    with torch.no_grad():
        caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
    return caption[0]

def load_list(filename):
    with open(filename, 'r', encoding='utf-8', errors='replace') as f:
        items = [line.strip() for line in f.readlines()]
    return items

def rank_top(image_features, text_array):
    text_tokens = clip.tokenize([text for text in text_array]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens).float()
    text_features /= text_features.norm(dim=-1, keepdim=True)

    similarity = torch.zeros((1, len(text_array)), device=device)
    for i in range(image_features.shape[0]):
        similarity += (image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)

    _, top_labels = similarity.cpu().topk(1, dim=-1)
    return text_array[top_labels[0][0].numpy()]

def similarity(image_features, text):
    text_tokens = clip.tokenize([text]).to(device)
    with torch.no_grad():
        text_features = clip_model.encode_text(text_tokens).float()       
    text_features /= text_features.norm(dim=-1, keepdim=True)
    similarity = text_features.cpu().numpy() @ image_features.cpu().numpy().T
    return similarity[0][0]

def interrogate(image):
    caption = generate_caption(image)

    images = clip_preprocess(image).unsqueeze(0).to(device)
    with torch.no_grad():
        image_features = clip_model.encode_image(images).float()
    image_features /= image_features.norm(dim=-1, keepdim=True)

    flaves = flavors.rank(image_features, flavor_intermediate_count)
    best_medium = mediums.rank(image_features, 1)[0]
    best_artist = artists.rank(image_features, 1)[0]
    best_trending = trendings.rank(image_features, 1)[0]
    best_movement = movements.rank(image_features, 1)[0]

    best_prompt = caption
    best_sim = similarity(image_features, best_prompt)

    def check(addition):
        nonlocal best_prompt, best_sim
        prompt = best_prompt + ", " + addition
        sim = similarity(image_features, prompt)
        if sim > best_sim:
            best_sim = sim
            best_prompt = prompt
            return True
        return False

    def check_multi_batch(opts):
        nonlocal best_prompt, best_sim
        prompts = []
        for i in range(2**len(opts)):
            prompt = best_prompt
            for bit in range(len(opts)):
                if i & (1 << bit):
                    prompt += ", " + opts[bit]
            prompts.append(prompt)

        prompt = rank_top(image_features, prompts)
        sim = similarity(image_features, prompt)
        if sim > best_sim:
            best_sim = sim
            best_prompt = prompt

    check_multi_batch([best_medium, best_artist, best_trending, best_movement])

    extended_flavors = set(flaves)
    for _ in tqdm(range(25), desc="Flavor chain"):
        try:
            best = rank_top(image_features, [f"{best_prompt}, {f}" for f in extended_flavors])
            flave = best[len(best_prompt)+2:]
            if not check(flave):
                break
            extended_flavors.remove(flave)
        except:
            # exceeded max prompt length
            break

    return best_prompt


sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
trending_list = [site for site in sites]
trending_list.extend(["trending on "+site for site in sites])
trending_list.extend(["featured on "+site for site in sites])
trending_list.extend([site+" contest winner" for site in sites])

raw_artists = load_list('data/artists.txt')
artists = [f"by {a}" for a in raw_artists]
artists.extend([f"inspired by {a}" for a in raw_artists])

artists = LabelTable(artists, "artists")
flavors = LabelTable(load_list('data/flavors.txt'), "flavors")
mediums = LabelTable(load_list('data/mediums.txt'), "mediums")
movements = LabelTable(load_list('data/movements.txt'), "movements")
trendings = LabelTable(trending_list, "trendings")


def inference(image):
    return interrogate(image)
    
inputs = [gr.inputs.Image(type='pil')]
outputs = gr.outputs.Textbox(label="Output")

title = """
    <div style="text-align: center; max-width: 650px; margin: 0 auto;">
        <div
        style="
            display: inline-flex;
            align-items: center;
            gap: 0.8rem;
            font-size: 1.75rem;
        "
        >
        <h1 style="font-weight: 900; margin-bottom: 7px;">
            CLIP Interrogator
        </h1>
        </div>
        <p style="margin-bottom: 10px; font-size: 94%">
        Want to figure out what a good prompt might be to create new images like an existing one? The CLIP Interrogator is here to get you answers!
        </p>
    </div>
"""
article = """
<p>
Example art by <a href="https://pixabay.com/illustrations/watercolour-painting-art-effect-4799014/">Layers</a> 
and <a href="https://pixabay.com/illustrations/animal-painting-cat-feline-pet-7154059/">Lin Tong</a> 
from pixabay.com
</p>

<p>
Server busy? You can also run on <a href="https://colab.research.google.com/github/pharmapsychotic/clip-interrogator/blob/main/clip_interrogator.ipynb">Google Colab</a>
</p>

<p>
Has this been helpful to you? Follow me on twitter 
<a href="https://twitter.com/pharmapsychotic">@pharmapsychotic</a> 
and check out more tools at my
<a href="https://pharmapsychotic.com/tools.html">Ai generative art tools list</a>
</p>
"""

css = '''
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
a {text-decoration-line: underline; font-weight: 600;}
'''

with gr.Blocks(css=css) as block:
    with gr.Column(elem_id="col-container"):
        gr.HTML(title)

        input_image = gr.inputs.Image(type='pil')
        submit_btn = gr.Button("Submit")
        output_text = gr.outputs.Textbox(label="Output")

        examples=[['example01.jpg'], ['example02.jpg']]
        ex = gr.Examples(examples=examples, fn=inference, inputs=input_image, outputs=output_text, cache_examples=True, run_on_click=True)
        ex.dataset.headers = [""]
        
        gr.HTML(article)

    submit_btn.click(fn=inference, inputs=input_image, outputs=output_text)

block.queue(max_size=32).launch(show_api=False)