Spaces:
Sleeping
Sleeping
# from huggingface_hub import InferenceClient | |
# import gradio as gr | |
# client = InferenceClient( | |
# "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
# ) | |
# def format_prompt(message, history): | |
# prompt = "<s>" | |
# for user_prompt, bot_response in history: | |
# prompt += f"[INST] {user_prompt} [/INST]" | |
# prompt += f" {bot_response}</s> " | |
# prompt += f"[INST] {message} [/INST]" | |
# return prompt | |
# def generate( | |
# prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0, | |
# ): | |
# temperature = float(temperature) | |
# if temperature < 1e-2: | |
# temperature = 1e-2 | |
# top_p = float(top_p) | |
# generate_kwargs = dict( | |
# temperature=temperature, | |
# max_new_tokens=max_new_tokens, | |
# top_p=top_p, | |
# repetition_penalty=repetition_penalty, | |
# do_sample=True, | |
# seed=42, | |
# ) | |
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
# output = "" | |
# for response in stream: | |
# output += response.token.text | |
# yield output | |
# return output | |
# additional_inputs=[ | |
# gr.Textbox( | |
# label="System Prompt", | |
# max_lines=1, | |
# interactive=True, | |
# ), | |
# gr.Slider( | |
# label="Temperature", | |
# value=0.9, | |
# minimum=0.0, | |
# maximum=1.0, | |
# step=0.05, | |
# interactive=True, | |
# info="Higher values produce more diverse outputs", | |
# ), | |
# gr.Slider( | |
# label="Max new tokens", | |
# value=256, | |
# minimum=0, | |
# maximum=1048, | |
# step=64, | |
# interactive=True, | |
# info="The maximum numbers of new tokens", | |
# ), | |
# gr.Slider( | |
# label="Top-p (nucleus sampling)", | |
# value=0.90, | |
# minimum=0.0, | |
# maximum=1, | |
# step=0.05, | |
# interactive=True, | |
# info="Higher values sample more low-probability tokens", | |
# ), | |
# gr.Slider( | |
# label="Repetition penalty", | |
# value=1.2, | |
# minimum=1.0, | |
# maximum=2.0, | |
# step=0.05, | |
# interactive=True, | |
# info="Penalize repeated tokens", | |
# ) | |
# ] | |
# examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], | |
# ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], | |
# ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], | |
# ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], | |
# ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], | |
# ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], | |
# ] | |
# gr.ChatInterface( | |
# fn=generate, | |
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
# additional_inputs=additional_inputs, | |
# title="Mixtral 46.7B", | |
# examples=examples, | |
# concurrency_limit=20, | |
# ).launch(show_api= True) | |
import os | |
import gradio as gr | |
from PyPDF2 import PdfReader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.embeddings import HuggingFaceBgeEmbeddings | |
from langchain.vectorstores import FAISS | |
from langchain.chat_models import ChatOpenAI | |
from langchain.memory import ConversationBufferMemory | |
from langchain.chains import ConversationalRetrievalChain | |
from huggingface_hub import InferenceClient | |
# Set the Hugging Face Hub API token | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token'] | |
# Initialize the InferenceClient | |
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1") | |
def get_pdf_text(pdf_docs): | |
text = "" | |
for pdf in pdf_docs: | |
pdf_reader = PdfReader(pdf) | |
for page in pdf_reader.pages: | |
text += page.extract_text() | |
return text | |
def get_text_chunks(text): | |
text_splitter = CharacterTextSplitter( | |
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len | |
) | |
chunks = text_splitter.split_text(text) | |
return chunks | |
def get_vectorstore(text_chunks): | |
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2" | |
encode_kwargs = {"normalize_embeddings": True} | |
embeddings = HuggingFaceBgeEmbeddings( | |
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"} | |
) | |
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) | |
return vectorstore | |
def format_prompt(message, history): | |
prompt = "<s>" | |
for user_prompt, bot_response in history: | |
prompt += f"[INST] {user_prompt} [/INST]" | |
prompt += f" {bot_response}</s> " | |
prompt += f"[INST] {message} [/INST]" | |
return prompt | |
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0): | |
temperature = float(temperature) | |
if temperature < 1e-2: | |
temperature = 1e-2 | |
top_p = float(top_p) | |
generate_kwargs = dict( | |
temperature=temperature, | |
max_new_tokens=max_new_tokens, | |
top_p=top_p, | |
repetition_penalty=repetition_penalty, | |
do_sample=True, | |
seed=42, | |
) | |
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
output = "" | |
for response in stream: | |
output += response.token.text | |
yield output | |
return output | |
def main(pdf_docs): | |
# get pdf text | |
raw_text = get_pdf_text(pdf_docs) | |
# get the text chunks | |
text_chunks = get_text_chunks(raw_text) | |
# create vector store | |
vectorstore = get_vectorstore(text_chunks) | |
# create conversation chain | |
conversation_chain = get_conversation_chain(vectorstore) | |
additional_inputs=[ | |
gr.Textbox( | |
label="System Prompt", | |
max_lines=1, | |
interactive=True, | |
), | |
gr.Slider( | |
label="Temperature", | |
value=0.9, | |
minimum=0.0, | |
maximum=1.0, | |
step=0.05, | |
interactive=True, | |
info="Higher values produce more diverse outputs", | |
), | |
gr.Slider( | |
label="Max new tokens", | |
value=256, | |
minimum=0, | |
maximum=1048, | |
step=64, | |
interactive=True, | |
info="The maximum numbers of new tokens", | |
), | |
gr.Slider( | |
label="Top-p (nucleus sampling)", | |
value=0.90, | |
minimum=0.0, | |
maximum=1, | |
step=0.05, | |
interactive=True, | |
info="Higher values sample more low-probability tokens", | |
), | |
gr.Slider( | |
label="Repetition penalty", | |
value=1.2, | |
minimum=1.0, | |
maximum=2.0, | |
step=0.05, | |
interactive=True, | |
info="Penalize repeated tokens", | |
) | |
] | |
examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ], | |
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,], | |
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,], | |
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,], | |
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,], | |
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,], | |
] | |
gr.ChatInterface( | |
fn=generate, | |
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
additional_inputs=additional_inputs, | |
title="Mixtral 46.7B", | |
examples=examples, | |
concurrency_limit=20, | |
).launch(show_api= True) | |
if __name__ == "__main__": | |
main([]) |