phoen1x's picture
Update app.py
931f95f verified
raw
history blame
8.91 kB
# from huggingface_hub import InferenceClient
# import gradio as gr
# client = InferenceClient(
# "mistralai/Mixtral-8x7B-Instruct-v0.1"
# )
# def format_prompt(message, history):
# prompt = "<s>"
# for user_prompt, bot_response in history:
# prompt += f"[INST] {user_prompt} [/INST]"
# prompt += f" {bot_response}</s> "
# prompt += f"[INST] {message} [/INST]"
# return prompt
# def generate(
# prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
# ):
# temperature = float(temperature)
# if temperature < 1e-2:
# temperature = 1e-2
# top_p = float(top_p)
# generate_kwargs = dict(
# temperature=temperature,
# max_new_tokens=max_new_tokens,
# top_p=top_p,
# repetition_penalty=repetition_penalty,
# do_sample=True,
# seed=42,
# )
# formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
# stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
# output = ""
# for response in stream:
# output += response.token.text
# yield output
# return output
# additional_inputs=[
# gr.Textbox(
# label="System Prompt",
# max_lines=1,
# interactive=True,
# ),
# gr.Slider(
# label="Temperature",
# value=0.9,
# minimum=0.0,
# maximum=1.0,
# step=0.05,
# interactive=True,
# info="Higher values produce more diverse outputs",
# ),
# gr.Slider(
# label="Max new tokens",
# value=256,
# minimum=0,
# maximum=1048,
# step=64,
# interactive=True,
# info="The maximum numbers of new tokens",
# ),
# gr.Slider(
# label="Top-p (nucleus sampling)",
# value=0.90,
# minimum=0.0,
# maximum=1,
# step=0.05,
# interactive=True,
# info="Higher values sample more low-probability tokens",
# ),
# gr.Slider(
# label="Repetition penalty",
# value=1.2,
# minimum=1.0,
# maximum=2.0,
# step=0.05,
# interactive=True,
# info="Penalize repeated tokens",
# )
# ]
# examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
# ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
# ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
# ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
# ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
# ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
# ]
# gr.ChatInterface(
# fn=generate,
# chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
# additional_inputs=additional_inputs,
# title="Mixtral 46.7B",
# examples=examples,
# concurrency_limit=20,
# ).launch(show_api= True)
import os
import gradio as gr
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from huggingface_hub import InferenceClient
# Set the Hugging Face Hub API token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']
# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
def get_pdf_text(pdf_docs):
text = ""
for pdf in pdf_docs:
pdf_reader = PdfReader(pdf)
for page in pdf_reader.pages:
text += page.extract_text()
return text
def get_text_chunks(text):
text_splitter = CharacterTextSplitter(
separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
)
chunks = text_splitter.split_text(text)
return chunks
def get_vectorstore(text_chunks):
model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
encode_kwargs = {"normalize_embeddings": True}
embeddings = HuggingFaceBgeEmbeddings(
model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
)
vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
return vectorstore
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
def main(pdf_docs):
# get pdf text
raw_text = get_pdf_text(pdf_docs)
# get the text chunks
text_chunks = get_text_chunks(raw_text)
# create vector store
vectorstore = get_vectorstore(text_chunks)
# create conversation chain
conversation_chain = get_conversation_chain(vectorstore)
additional_inputs=[
gr.Textbox(
label="System Prompt",
max_lines=1,
interactive=True,
),
gr.Slider(
label="Temperature",
value=0.9,
minimum=0.0,
maximum=1.0,
step=0.05,
interactive=True,
info="Higher values produce more diverse outputs",
),
gr.Slider(
label="Max new tokens",
value=256,
minimum=0,
maximum=1048,
step=64,
interactive=True,
info="The maximum numbers of new tokens",
),
gr.Slider(
label="Top-p (nucleus sampling)",
value=0.90,
minimum=0.0,
maximum=1,
step=0.05,
interactive=True,
info="Higher values sample more low-probability tokens",
),
gr.Slider(
label="Repetition penalty",
value=1.2,
minimum=1.0,
maximum=2.0,
step=0.05,
interactive=True,
info="Penalize repeated tokens",
)
]
examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
]
gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
additional_inputs=additional_inputs,
title="Mixtral 46.7B",
examples=examples,
concurrency_limit=20,
).launch(show_api= True)
if __name__ == "__main__":
main([])