Spaces:
Runtime error
Runtime error
File size: 1,403 Bytes
a10547f b6c250a 12c727d a10547f 12c727d b6c250a a10547f 12c727d b6c250a 8be3cb5 12c727d b6c250a 12c727d 9e4102b 12c727d b6c250a 12c727d d924060 b6c250a 12c727d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import gradio as gr
import joblib
import pandas as pd
import datasets
import json
# Load the model
pipe = joblib.load("./model.pkl")
title = "Premium Amount Prediction"
description = "This model predicts the Premium Amount. Drag and drop any slice from the dataset or edit values as you wish in the dataframe component below."
# Load and prepare dataset
df = datasets.load_dataset("silvaKenpachi/mental_health")["train"].to_pandas()
df.dropna(axis=0, inplace=True)
# Load configuration
with open("./config.json") as f:
config_dict = json.load(f)
all_headers = config_dict["sklearn"]["columns"]
# Filter headers to only include those present in the dataset
headers = [col for col in all_headers if col in df.columns]
# Define input and output interfaces
inputs = [gr.Dataframe(headers=headers, row_count=(2, "dynamic"), col_count=(len(headers), "fixed"), label="Input Data", interactive=True)]
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Depression"])]
def infer(inputs):
data = pd.DataFrame(inputs, columns=headers)
predictions = pipe.predict(data)
return pd.DataFrame(predictions, columns=["Depression"])
gr.Interface(
fn=infer,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=[df[headers].head(3).values.tolist()],
cache_examples=False
).launch(debug=True)
|