Spaces:
Runtime error
Runtime error
import gradio as gr | |
import joblib | |
import pandas as pd | |
import datasets | |
import json | |
# Load the model | |
pipe = joblib.load("./model.pkl") | |
title = "Premium Amount Prediction" | |
description = "This model predicts the Premium Amount. Drag and drop any slice from the dataset or edit values as you wish in the dataframe component below." | |
# Load and prepare dataset | |
df = datasets.load_dataset("silvaKenpachi/mental_health")["train"].to_pandas() | |
df.dropna(axis=0, inplace=True) | |
# Load configuration | |
with open("./config.json") as f: | |
config_dict = json.load(f) | |
all_headers = config_dict["sklearn"]["columns"] | |
# Filter headers to only include those present in the dataset | |
headers = [col for col in all_headers if col in df.columns] | |
# Define input and output interfaces | |
inputs = [gr.Dataframe(headers=headers, row_count=(2, "dynamic"), col_count=(len(headers), "fixed"), label="Input Data", interactive=True)] | |
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Depression"])] | |
def infer(inputs): | |
data = pd.DataFrame(inputs, columns=headers) | |
predictions = pipe.predict(data) | |
return pd.DataFrame(predictions, columns=["Depression"]) | |
gr.Interface( | |
fn=infer, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
examples=[df[headers].head(3).values.tolist()], | |
cache_examples=False | |
).launch(debug=True) | |