silvaKenpachi's picture
Update app.py
8be3cb5 verified
raw
history blame
1.4 kB
import gradio as gr
import joblib
import pandas as pd
import datasets
import json
# Load the model
pipe = joblib.load("./model.pkl")
title = "Premium Amount Prediction"
description = "This model predicts the Premium Amount. Drag and drop any slice from the dataset or edit values as you wish in the dataframe component below."
# Load and prepare dataset
df = datasets.load_dataset("silvaKenpachi/mental_health")["train"].to_pandas()
df.dropna(axis=0, inplace=True)
# Load configuration
with open("./config.json") as f:
config_dict = json.load(f)
all_headers = config_dict["sklearn"]["columns"]
# Filter headers to only include those present in the dataset
headers = [col for col in all_headers if col in df.columns]
# Define input and output interfaces
inputs = [gr.Dataframe(headers=headers, row_count=(2, "dynamic"), col_count=(len(headers), "fixed"), label="Input Data", interactive=True)]
outputs = [gr.Dataframe(row_count=(2, "dynamic"), col_count=(1, "fixed"), label="Predictions", headers=["Depression"])]
def infer(inputs):
data = pd.DataFrame(inputs, columns=headers)
predictions = pipe.predict(data)
return pd.DataFrame(predictions, columns=["Depression"])
gr.Interface(
fn=infer,
inputs=inputs,
outputs=outputs,
title=title,
description=description,
examples=[df[headers].head(3).values.tolist()],
cache_examples=False
).launch(debug=True)