File size: 50,442 Bytes
9ee2570 e6e361c 10a9d50 e2bdea8 6c79e9c e6e361c 9f748cc e2bdea8 9f748cc 10a9d50 6c79e9c 9f748cc 9ee2570 4b6439a a43ee0a 9f748cc b4477ed 9f748cc e6e361c 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 6c79e9c ab41240 a43ee0a 10a9d50 9f748cc ab41240 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 27218a1 9f748cc 9ee2570 27218a1 4a4807f 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 e2bdea8 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc b4477ed 9f748cc 9ee2570 9f748cc e6e361c 9ee2570 10a9d50 9f748cc 9ee2570 10a9d50 76d770d 10a9d50 6c79e9c 10a9d50 76d770d 10a9d50 9ee2570 9f748cc 9ee2570 9f748cc b4477ed 10a9d50 b4477ed 9ee2570 10a9d50 9ee2570 10a9d50 b4477ed 9ee2570 b7778c4 9f748cc b4477ed 9f748cc 9ee2570 e6e361c 6c79e9c e6e361c b7778c4 9f748cc 9ee2570 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 9ee2570 4b6439a d34f363 9ee2570 10a9d50 9ee2570 e6e361c 9ee2570 10a9d50 9ee2570 e2bdea8 9ee2570 10a9d50 9ee2570 e6e361c 9ee2570 10a9d50 9ee2570 025c21d e2bdea8 9ee2570 9f748cc 9ee2570 10a9d50 9ee2570 4b6439a 9ee2570 9f748cc 9ee2570 9f748cc b7778c4 9ee2570 e6e361c 9ee2570 9f748cc 9ee2570 6c79e9c 9ee2570 6c79e9c 9ee2570 e2bdea8 9ee2570 b7778c4 9ee2570 e2bdea8 9ee2570 e2bdea8 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 b7778c4 9ee2570 025c21d 9ee2570 10a9d50 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 9f748cc 9ee2570 10a9d50 9ee2570 e6e361c 9ee2570 e6e361c 9ee2570 e2bdea8 9ee2570 10a9d50 9ee2570 e2bdea8 9ee2570 10a9d50 d34f363 10a9d50 d34f363 9ee2570 9f748cc e6e361c 9f748cc 10a9d50 9f748cc 9ee2570 9f748cc 9ee2570 4b6439a 9f748cc 4b6439a 9f748cc 10a9d50 4b6439a 10a9d50 4b6439a 10a9d50 4b6439a 10a9d50 9f748cc 4b6439a 10a9d50 4b6439a 10a9d50 4b6439a 10a9d50 e6e361c 4b6439a 10a9d50 4b6439a b7778c4 9f748cc 4b6439a 9f748cc b7778c4 4b6439a b7778c4 9f748cc 4b6439a 9f748cc b7778c4 4b6439a b7778c4 9f748cc a43ee0a 9f748cc e2bdea8 a43ee0a e2bdea8 a43ee0a e2bdea8 a43ee0a e2bdea8 a43ee0a e2bdea8 a43ee0a 4b6439a 9f748cc 10a9d50 4b6439a 9f748cc 9ee2570 4b6439a e6e361c 86a1d1a 10a9d50 9f748cc 10a9d50 9f748cc 1f682f8 9ee2570 3763349 10a9d50 e2bdea8 10a9d50 e2bdea8 9ee2570 10a9d50 9f748cc 10a9d50 582ad1d 9f748cc 3763349 9f748cc 23aa4a5 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 10a9d50 9f748cc 3763349 10a9d50 e2bdea8 10a9d50 e2bdea8 9f748cc 86a1d1a 9f748cc 9ee2570 1f682f8 9ee2570 3763349 10a9d50 e2bdea8 10a9d50 e2bdea8 23aa4a5 9ee2570 40ea453 9ee2570 10a9d50 9ee2570 23aa4a5 9ee2570 23aa4a5 9ee2570 23aa4a5 9ee2570 9329194 6fd8887 9329194 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 |
import spaces
import os
from stablepy import (
Model_Diffusers,
SCHEDULE_TYPE_OPTIONS,
SCHEDULE_PREDICTION_TYPE_OPTIONS,
check_scheduler_compatibility,
TASK_AND_PREPROCESSORS,
FACE_RESTORATION_MODELS,
scheduler_names,
)
from constants import (
DIRECTORY_UPSCALERS,
TASK_STABLEPY,
TASK_MODEL_LIST,
UPSCALER_DICT_GUI,
UPSCALER_KEYS,
PROMPT_W_OPTIONS,
WARNING_MSG_VAE,
SDXL_TASK,
MODEL_TYPE_TASK,
POST_PROCESSING_SAMPLER,
DIFFUSERS_CONTROLNET_MODEL,
IP_MODELS,
MODE_IP_OPTIONS,
)
from stablepy.diffusers_vanilla.style_prompt_config import STYLE_NAMES
import torch
import re
import time
from PIL import ImageFile
from utils import (
get_model_list,
extract_parameters,
get_model_type,
extract_exif_data,
create_mask_now,
download_diffuser_repo,
get_used_storage_gb,
delete_model,
progress_step_bar,
html_template_message,
escape_html,
)
from image_processor import preprocessor_tab
from datetime import datetime
import gradio as gr
import logging
import diffusers
import warnings
from stablepy import logger
from diffusers import FluxPipeline
# import urllib.parse
import subprocess
subprocess.run("rm -rf /data-nvme/zerogpu-offload/*", env={}, shell=True)
ImageFile.LOAD_TRUNCATED_IMAGES = True
torch.backends.cuda.matmul.allow_tf32 = True
# os.environ["PYTORCH_NO_CUDA_MEMORY_CACHING"] = "1"
print(os.getenv("SPACES_ZERO_GPU"))
## BEGIN MOD
logging.getLogger("diffusers").setLevel(logging.ERROR)
diffusers.utils.logging.set_verbosity(40)
warnings.filterwarnings(action="ignore", category=FutureWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=UserWarning, module="diffusers")
warnings.filterwarnings(action="ignore", category=FutureWarning, module="transformers")
logger.setLevel(logging.DEBUG)
from env import (
HF_TOKEN, HF_READ_TOKEN, # to use only for private repos
CIVITAI_API_KEY, HF_LORA_PRIVATE_REPOS1, HF_LORA_PRIVATE_REPOS2,
HF_LORA_ESSENTIAL_PRIVATE_REPO, HF_VAE_PRIVATE_REPO,
HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO,
DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS,
DIRECTORY_EMBEDS_SDXL, DIRECTORY_EMBEDS_POSITIVE_SDXL,
LOAD_DIFFUSERS_FORMAT_MODEL, DOWNLOAD_MODEL_LIST, DOWNLOAD_LORA_LIST,
DOWNLOAD_VAE_LIST, DOWNLOAD_EMBEDS)
from modutils import (to_list, list_uniq, list_sub, get_model_id_list, get_tupled_embed_list,
get_tupled_model_list, get_lora_model_list, download_private_repo, download_things)
# - **Download Models**
download_model = ", ".join(DOWNLOAD_MODEL_LIST)
# - **Download VAEs**
download_vae = ", ".join(DOWNLOAD_VAE_LIST)
# - **Download LoRAs**
download_lora = ", ".join(DOWNLOAD_LORA_LIST)
#download_private_repo(HF_LORA_ESSENTIAL_PRIVATE_REPO, DIRECTORY_LORAS, True)
download_private_repo(HF_VAE_PRIVATE_REPO, DIRECTORY_VAES, False)
load_diffusers_format_model = list_uniq(LOAD_DIFFUSERS_FORMAT_MODEL + get_model_id_list())
## END MOD
directories = [DIRECTORY_MODELS, DIRECTORY_LORAS, DIRECTORY_VAES, DIRECTORY_EMBEDS, DIRECTORY_UPSCALERS]
for directory in directories:
os.makedirs(directory, exist_ok=True)
# Download stuffs
for url in [url.strip() for url in download_model.split(',')]:
if not os.path.exists(f"./models/{url.split('/')[-1]}"):
download_things(DIRECTORY_MODELS, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_vae.split(',')]:
if not os.path.exists(f"./vaes/{url.split('/')[-1]}"):
download_things(DIRECTORY_VAES, url, HF_TOKEN, CIVITAI_API_KEY)
for url in [url.strip() for url in download_lora.split(',')]:
if not os.path.exists(f"./loras/{url.split('/')[-1]}"):
download_things(DIRECTORY_LORAS, url, HF_TOKEN, CIVITAI_API_KEY)
# Download Embeddings
for url_embed in DOWNLOAD_EMBEDS:
if not os.path.exists(f"./embedings/{url_embed.split('/')[-1]}"):
download_things(DIRECTORY_EMBEDS, url_embed, HF_TOKEN, CIVITAI_API_KEY)
# Build list models
embed_list = get_model_list(DIRECTORY_EMBEDS)
single_file_model_list = get_model_list(DIRECTORY_MODELS)
model_list = list_uniq(get_model_id_list() + LOAD_DIFFUSERS_FORMAT_MODEL + single_file_model_list)
## BEGIN MOD
lora_model_list = get_lora_model_list()
vae_model_list = get_model_list(DIRECTORY_VAES)
vae_model_list.insert(0, "BakedVAE")
vae_model_list.insert(0, "None")
download_private_repo(HF_SDXL_EMBEDS_NEGATIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_SDXL, False)
download_private_repo(HF_SDXL_EMBEDS_POSITIVE_PRIVATE_REPO, DIRECTORY_EMBEDS_POSITIVE_SDXL, False)
embed_sdxl_list = get_model_list(DIRECTORY_EMBEDS_SDXL) + get_model_list(DIRECTORY_EMBEDS_POSITIVE_SDXL)
def get_embed_list(pipeline_name):
return get_tupled_embed_list(embed_sdxl_list if pipeline_name == "StableDiffusionXLPipeline" else embed_list)
## END MOD
print('\033[33m🏁 Download and listing of valid models completed.\033[0m')
flux_repo = "camenduru/FLUX.1-dev-diffusers"
flux_pipe = FluxPipeline.from_pretrained(
flux_repo,
transformer=None,
torch_dtype=torch.bfloat16,
)#.to("cuda")
components = flux_pipe.components
components.pop("transformer", None)
components.pop("scheduler", None)
delete_model(flux_repo)
#components = None
## BEGIN MOD
class GuiSD:
def __init__(self, stream=True):
self.model = None
self.status_loading = False
self.sleep_loading = 4
self.last_load = datetime.now()
self.inventory = []
def update_storage_models(self, storage_floor_gb=24, required_inventory_for_purge=3):
while get_used_storage_gb() > storage_floor_gb:
if len(self.inventory) < required_inventory_for_purge:
break
removal_candidate = self.inventory.pop(0)
delete_model(removal_candidate)
def update_inventory(self, model_name):
if model_name not in single_file_model_list:
self.inventory = [
m for m in self.inventory if m != model_name
] + [model_name]
print(self.inventory)
def load_new_model(self, model_name, vae_model, task, controlnet_model, progress=gr.Progress(track_tqdm=True)):
# download link model > model_name
self.update_storage_models()
vae_model = vae_model if vae_model != "None" else None
model_type = get_model_type(model_name)
dtype_model = torch.bfloat16 if model_type == "FLUX" else torch.float16
if not os.path.exists(model_name):
_ = download_diffuser_repo(
repo_name=model_name,
model_type=model_type,
revision="main",
token=True,
)
self.update_inventory(model_name)
for i in range(68):
if not self.status_loading:
self.status_loading = True
if i > 0:
time.sleep(self.sleep_loading)
print("Previous model ops...")
break
time.sleep(0.5)
print(f"Waiting queue {i}")
yield "Waiting queue"
self.status_loading = True
yield f"Loading model: {model_name}"
if vae_model == "BakedVAE":
vae_model = model_name
elif vae_model:
vae_type = "SDXL" if "sdxl" in vae_model.lower() else "SD 1.5"
if model_type != vae_type:
gr.Warning(WARNING_MSG_VAE)
print("Loading model...")
try:
start_time = time.time()
if self.model is None:
self.model = Model_Diffusers(
base_model_id=model_name,
task_name=TASK_STABLEPY[task],
vae_model=vae_model,
type_model_precision=dtype_model,
retain_task_model_in_cache=False,
controlnet_model=controlnet_model,
device="cpu",
env_components=components,
)
self.model.advanced_params(image_preprocessor_cuda_active=True)
else:
if self.model.base_model_id != model_name:
load_now_time = datetime.now()
elapsed_time = max((load_now_time - self.last_load).total_seconds(), 0)
if elapsed_time <= 9:
print("Waiting for the previous model's time ops...")
time.sleep(9 - elapsed_time)
self.model.device = torch.device("cpu")
self.model.load_pipe(
model_name,
task_name=TASK_STABLEPY[task],
vae_model=vae_model,
type_model_precision=dtype_model,
retain_task_model_in_cache=False,
controlnet_model=controlnet_model,
)
end_time = time.time()
self.sleep_loading = max(min(int(end_time - start_time), 10), 4)
except Exception as e:
self.last_load = datetime.now()
self.status_loading = False
self.sleep_loading = 4
raise e
self.last_load = datetime.now()
self.status_loading = False
yield f"Model loaded: {model_name}"
#@spaces.GPU
@torch.inference_mode()
def generate_pipeline(
self,
prompt,
neg_prompt,
num_images,
steps,
cfg,
clip_skip,
seed,
lora1,
lora_scale1,
lora2,
lora_scale2,
lora3,
lora_scale3,
lora4,
lora_scale4,
lora5,
lora_scale5,
lora6,
lora_scale6,
lora7,
lora_scale7,
sampler,
schedule_type,
schedule_prediction_type,
img_height,
img_width,
model_name,
vae_model,
task,
image_control,
preprocessor_name,
preprocess_resolution,
image_resolution,
style_prompt, # list []
style_json_file,
image_mask,
strength,
low_threshold,
high_threshold,
value_threshold,
distance_threshold,
recolor_gamma_correction,
tile_blur_sigma,
controlnet_output_scaling_in_unet,
controlnet_start_threshold,
controlnet_stop_threshold,
textual_inversion,
syntax_weights,
upscaler_model_path,
upscaler_increases_size,
upscaler_tile_size,
upscaler_tile_overlap,
hires_steps,
hires_denoising_strength,
hires_sampler,
hires_prompt,
hires_negative_prompt,
hires_before_adetailer,
hires_after_adetailer,
hires_schedule_type,
hires_guidance_scale,
controlnet_model,
loop_generation,
leave_progress_bar,
disable_progress_bar,
image_previews,
display_images,
save_generated_images,
filename_pattern,
image_storage_location,
retain_compel_previous_load,
retain_detailfix_model_previous_load,
retain_hires_model_previous_load,
t2i_adapter_preprocessor,
t2i_adapter_conditioning_scale,
t2i_adapter_conditioning_factor,
xformers_memory_efficient_attention,
freeu,
generator_in_cpu,
adetailer_inpaint_only,
adetailer_verbose,
adetailer_sampler,
adetailer_active_a,
prompt_ad_a,
negative_prompt_ad_a,
strength_ad_a,
face_detector_ad_a,
person_detector_ad_a,
hand_detector_ad_a,
mask_dilation_a,
mask_blur_a,
mask_padding_a,
adetailer_active_b,
prompt_ad_b,
negative_prompt_ad_b,
strength_ad_b,
face_detector_ad_b,
person_detector_ad_b,
hand_detector_ad_b,
mask_dilation_b,
mask_blur_b,
mask_padding_b,
retain_task_cache_gui,
guidance_rescale,
image_ip1,
mask_ip1,
model_ip1,
mode_ip1,
scale_ip1,
image_ip2,
mask_ip2,
model_ip2,
mode_ip2,
scale_ip2,
pag_scale,
face_restoration_model,
face_restoration_visibility,
face_restoration_weight,
):
info_state = html_template_message("Navigating latent space...")
yield info_state, gr.update(), gr.update()
vae_model = vae_model if vae_model != "None" else None
loras_list = [lora1, lora2, lora3, lora4, lora5, lora6, lora7]
vae_msg = f"VAE: {vae_model}" if vae_model else ""
msg_lora = ""
## BEGIN MOD
loras_list = [s if s else "None" for s in loras_list]
global lora_model_list
lora_model_list = get_lora_model_list()
## END MOD
print("Config model:", model_name, vae_model, loras_list)
task = TASK_STABLEPY[task]
params_ip_img = []
params_ip_msk = []
params_ip_model = []
params_ip_mode = []
params_ip_scale = []
all_adapters = [
(image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1),
(image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2),
]
if not hasattr(self.model.pipe, "transformer"):
for imgip, mskip, modelip, modeip, scaleip in all_adapters:
if imgip:
params_ip_img.append(imgip)
if mskip:
params_ip_msk.append(mskip)
params_ip_model.append(modelip)
params_ip_mode.append(modeip)
params_ip_scale.append(scaleip)
concurrency = 5
self.model.stream_config(concurrency=concurrency, latent_resize_by=1, vae_decoding=False)
if task != "txt2img" and not image_control:
raise ValueError("Reference image is required. Please upload one in 'Image ControlNet/Inpaint/Img2img'.")
if task in ["inpaint", "repaint"] and not image_mask:
raise ValueError("Mask image not found. Upload one in 'Image Mask' to proceed.")
if "https://" not in str(UPSCALER_DICT_GUI[upscaler_model_path]):
upscaler_model = upscaler_model_path
else:
url_upscaler = UPSCALER_DICT_GUI[upscaler_model_path]
if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"):
download_things(DIRECTORY_UPSCALERS, url_upscaler, HF_TOKEN)
upscaler_model = f"./{DIRECTORY_UPSCALERS}/{url_upscaler.split('/')[-1]}"
logging.getLogger("ultralytics").setLevel(logging.INFO if adetailer_verbose else logging.ERROR)
adetailer_params_A = {
"face_detector_ad": face_detector_ad_a,
"person_detector_ad": person_detector_ad_a,
"hand_detector_ad": hand_detector_ad_a,
"prompt": prompt_ad_a,
"negative_prompt": negative_prompt_ad_a,
"strength": strength_ad_a,
# "image_list_task" : None,
"mask_dilation": mask_dilation_a,
"mask_blur": mask_blur_a,
"mask_padding": mask_padding_a,
"inpaint_only": adetailer_inpaint_only,
"sampler": adetailer_sampler,
}
adetailer_params_B = {
"face_detector_ad": face_detector_ad_b,
"person_detector_ad": person_detector_ad_b,
"hand_detector_ad": hand_detector_ad_b,
"prompt": prompt_ad_b,
"negative_prompt": negative_prompt_ad_b,
"strength": strength_ad_b,
# "image_list_task" : None,
"mask_dilation": mask_dilation_b,
"mask_blur": mask_blur_b,
"mask_padding": mask_padding_b,
}
pipe_params = {
"prompt": prompt,
"negative_prompt": neg_prompt,
"img_height": img_height,
"img_width": img_width,
"num_images": num_images,
"num_steps": steps,
"guidance_scale": cfg,
"clip_skip": clip_skip,
"pag_scale": float(pag_scale),
"seed": seed,
"image": image_control,
"preprocessor_name": preprocessor_name,
"preprocess_resolution": preprocess_resolution,
"image_resolution": image_resolution,
"style_prompt": style_prompt if style_prompt else "",
"style_json_file": "",
"image_mask": image_mask, # only for Inpaint
"strength": strength, # only for Inpaint or ...
"low_threshold": low_threshold,
"high_threshold": high_threshold,
"value_threshold": value_threshold,
"distance_threshold": distance_threshold,
"recolor_gamma_correction": float(recolor_gamma_correction),
"tile_blur_sigma": int(tile_blur_sigma),
"lora_A": lora1 if lora1 != "None" else None,
"lora_scale_A": lora_scale1,
"lora_B": lora2 if lora2 != "None" else None,
"lora_scale_B": lora_scale2,
"lora_C": lora3 if lora3 != "None" else None,
"lora_scale_C": lora_scale3,
"lora_D": lora4 if lora4 != "None" else None,
"lora_scale_D": lora_scale4,
"lora_E": lora5 if lora5 != "None" else None,
"lora_scale_E": lora_scale5,
"lora_F": lora6 if lora6 != "None" else None,
"lora_scale_F": lora_scale6,
"lora_G": lora7 if lora7 != "None" else None,
"lora_scale_G": lora_scale7,
## BEGIN MOD
"textual_inversion": get_embed_list(self.model.class_name) if textual_inversion else [],
## END MOD
"syntax_weights": syntax_weights, # "Classic"
"sampler": sampler,
"schedule_type": schedule_type,
"schedule_prediction_type": schedule_prediction_type,
"xformers_memory_efficient_attention": xformers_memory_efficient_attention,
"gui_active": True,
"loop_generation": loop_generation,
"controlnet_conditioning_scale": float(controlnet_output_scaling_in_unet),
"control_guidance_start": float(controlnet_start_threshold),
"control_guidance_end": float(controlnet_stop_threshold),
"generator_in_cpu": generator_in_cpu,
"FreeU": freeu,
"adetailer_A": adetailer_active_a,
"adetailer_A_params": adetailer_params_A,
"adetailer_B": adetailer_active_b,
"adetailer_B_params": adetailer_params_B,
"leave_progress_bar": leave_progress_bar,
"disable_progress_bar": disable_progress_bar,
"image_previews": image_previews,
"display_images": display_images,
"save_generated_images": save_generated_images,
"filename_pattern": filename_pattern,
"image_storage_location": image_storage_location,
"retain_compel_previous_load": retain_compel_previous_load,
"retain_detailfix_model_previous_load": retain_detailfix_model_previous_load,
"retain_hires_model_previous_load": retain_hires_model_previous_load,
"t2i_adapter_preprocessor": t2i_adapter_preprocessor,
"t2i_adapter_conditioning_scale": float(t2i_adapter_conditioning_scale),
"t2i_adapter_conditioning_factor": float(t2i_adapter_conditioning_factor),
"upscaler_model_path": upscaler_model,
"upscaler_increases_size": upscaler_increases_size,
"upscaler_tile_size": upscaler_tile_size,
"upscaler_tile_overlap": upscaler_tile_overlap,
"hires_steps": hires_steps,
"hires_denoising_strength": hires_denoising_strength,
"hires_prompt": hires_prompt,
"hires_negative_prompt": hires_negative_prompt,
"hires_sampler": hires_sampler,
"hires_before_adetailer": hires_before_adetailer,
"hires_after_adetailer": hires_after_adetailer,
"hires_schedule_type": hires_schedule_type,
"hires_guidance_scale": hires_guidance_scale,
"ip_adapter_image": params_ip_img,
"ip_adapter_mask": params_ip_msk,
"ip_adapter_model": params_ip_model,
"ip_adapter_mode": params_ip_mode,
"ip_adapter_scale": params_ip_scale,
"face_restoration_model": face_restoration_model,
"face_restoration_visibility": face_restoration_visibility,
"face_restoration_weight": face_restoration_weight,
}
# kwargs for diffusers pipeline
if guidance_rescale:
pipe_params["guidance_rescale"] = guidance_rescale
self.model.device = torch.device("cuda:0")
if hasattr(self.model.pipe, "transformer") and loras_list != ["None"] * self.model.num_loras:
self.model.pipe.transformer.to(self.model.device)
print("transformer to cuda")
actual_progress = 0
info_images = gr.update()
for img, [seed, image_path, metadata] in self.model(**pipe_params):
info_state = progress_step_bar(actual_progress, steps)
actual_progress += concurrency
if image_path:
info_images = f"Seeds: {str(seed)}"
if vae_msg:
info_images = info_images + "<br>" + vae_msg
if "Cannot copy out of meta tensor; no data!" in self.model.last_lora_error:
msg_ram = "Unable to process the LoRAs due to high RAM usage; please try again later."
print(msg_ram)
msg_lora += f"<br>{msg_ram}"
for status, lora in zip(self.model.lora_status, self.model.lora_memory):
if status:
msg_lora += f"<br>Loaded: {lora}"
elif status is not None:
msg_lora += f"<br>Error with: {lora}"
if msg_lora:
info_images += msg_lora
info_images = info_images + "<br>" + "GENERATION DATA:<br>" + escape_html(metadata[-1]) + "<br>-------<br>"
download_links = "<br>".join(
[
f'<a href="{path.replace("/images/", "/file=/home/user/app/images/")}" download="{os.path.basename(path)}">Download Image {i + 1}</a>'
for i, path in enumerate(image_path)
]
)
if save_generated_images:
info_images += f"<br>{download_links}"
## BEGIN MOD
if not isinstance(img, list): img = [img]
img = save_images(img, metadata)
img = [(i, None) for i in img]
## END MOD
info_state = "COMPLETE"
yield info_state, img, info_images
#return info_state, img, info_images
def dynamic_gpu_duration(func, duration, *args):
@spaces.GPU(duration=duration)
def wrapped_func():
yield from func(*args)
return wrapped_func()
@spaces.GPU
def dummy_gpu():
return None
def sd_gen_generate_pipeline(*args):
gpu_duration_arg = int(args[-1]) if args[-1] else 59
verbose_arg = int(args[-2])
load_lora_cpu = args[-3]
generation_args = args[:-3]
lora_list = [
None if item == "None" or item == "" else item # MOD
for item in [args[7], args[9], args[11], args[13], args[15], args[17], args[19]]
]
lora_status = [None] * sd_gen.model.num_loras
msg_load_lora = "Updating LoRAs in GPU..."
if load_lora_cpu:
msg_load_lora = "Updating LoRAs in CPU..."
if lora_list != sd_gen.model.lora_memory and lora_list != [None] * sd_gen.model.num_loras:
yield msg_load_lora, gr.update(), gr.update()
# Load lora in CPU
if load_lora_cpu:
lora_status = sd_gen.model.load_lora_on_the_fly(
lora_A=lora_list[0], lora_scale_A=args[8],
lora_B=lora_list[1], lora_scale_B=args[10],
lora_C=lora_list[2], lora_scale_C=args[12],
lora_D=lora_list[3], lora_scale_D=args[14],
lora_E=lora_list[4], lora_scale_E=args[16],
lora_F=lora_list[5], lora_scale_F=args[18],
lora_G=lora_list[6], lora_scale_G=args[20],
)
print(lora_status)
sampler_name = args[21]
schedule_type_name = args[22]
_, _, msg_sampler = check_scheduler_compatibility(
sd_gen.model.class_name, sampler_name, schedule_type_name
)
if msg_sampler:
gr.Warning(msg_sampler)
if verbose_arg:
for status, lora in zip(lora_status, lora_list):
if status:
gr.Info(f"LoRA loaded in CPU: {lora}")
elif status is not None:
gr.Warning(f"Failed to load LoRA: {lora}")
if lora_status == [None] * sd_gen.model.num_loras and sd_gen.model.lora_memory != [None] * sd_gen.model.num_loras and load_lora_cpu:
lora_cache_msg = ", ".join(
str(x) for x in sd_gen.model.lora_memory if x is not None
)
gr.Info(f"LoRAs in cache: {lora_cache_msg}")
msg_request = f"Requesting {gpu_duration_arg}s. of GPU time.\nModel: {sd_gen.model.base_model_id}"
if verbose_arg:
gr.Info(msg_request)
print(msg_request)
yield msg_request.replace("\n", "<br>"), gr.update(), gr.update()
start_time = time.time()
# yield from sd_gen.generate_pipeline(*generation_args)
yield from dynamic_gpu_duration(
sd_gen.generate_pipeline,
gpu_duration_arg,
*generation_args,
)
end_time = time.time()
execution_time = end_time - start_time
msg_task_complete = (
f"GPU task complete in: {int(round(execution_time, 0) + 1)} seconds"
)
if verbose_arg:
gr.Info(msg_task_complete)
print(msg_task_complete)
yield msg_task_complete, gr.update(), gr.update()
@spaces.GPU(duration=15)
def process_upscale(image, upscaler_name, upscaler_size):
if image is None: return None
from stablepy.diffusers_vanilla.utils import save_pil_image_with_metadata
from stablepy import load_upscaler_model
image = image.convert("RGB")
exif_image = extract_exif_data(image)
name_upscaler = UPSCALER_DICT_GUI[upscaler_name]
if "https://" in str(name_upscaler):
if not os.path.exists(f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"):
download_things(DIRECTORY_UPSCALERS, name_upscaler, HF_TOKEN)
name_upscaler = f"./{DIRECTORY_UPSCALERS}/{name_upscaler.split('/')[-1]}"
scaler_beta = load_upscaler_model(model=name_upscaler, tile=0, tile_overlap=8, device="cuda", half=True)
image_up = scaler_beta.upscale(image, upscaler_size, True)
image_path = save_pil_image_with_metadata(image_up, f'{os.getcwd()}/up_images', exif_image)
return image_path
# https://huggingface.co/spaces/BestWishYsh/ConsisID-preview-Space/discussions/1#674969a022b99c122af5d407
dynamic_gpu_duration.zerogpu = True
sd_gen_generate_pipeline.zerogpu = True
sd_gen = GuiSD()
from pathlib import Path
from PIL import Image
import PIL
import numpy as np
import random
import json
import shutil
import gc
from tagger.tagger import insert_model_recom_prompt
from modutils import (safe_float, escape_lora_basename, to_lora_key, to_lora_path, valid_model_name, set_textual_inversion_prompt,
get_local_model_list, get_model_pipeline, get_private_lora_model_lists, get_valid_lora_name, get_state, set_state,
get_valid_lora_path, get_valid_lora_wt, get_lora_info, CIVITAI_SORT, CIVITAI_PERIOD, CIVITAI_BASEMODEL,
normalize_prompt_list, get_civitai_info, search_lora_on_civitai, translate_to_en, get_t2i_model_info, get_civitai_tag, save_image_history,
get_all_lora_list, get_all_lora_tupled_list, update_lora_dict, download_lora, copy_lora, download_my_lora, set_prompt_loras,
apply_lora_prompt, update_loras, search_civitai_lora, search_civitai_lora_json, update_civitai_selection, select_civitai_lora)
#@spaces.GPU
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0, lora6=None, lora6_wt=1.0, lora7=None, lora7_wt=1.0,
task=TASK_MODEL_LIST[0], prompt_syntax="Classic", sampler="Euler", vae=None, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
clip_skip=True, pag_scale=0.0, free_u=False, guidance_rescale=0., image_control_dict=None, image_mask=None, strength=0.35, image_resolution=1024,
controlnet_model=DIFFUSERS_CONTROLNET_MODEL[0], control_net_output_scaling=1.0, control_net_start_threshold=0., control_net_stop_threshold=1.,
preprocessor_name="Canny", preprocess_resolution=512, low_threshold=100, high_threshold=200,
value_threshold=0.1, distance_threshold=0.1, recolor_gamma_correction=1., tile_blur_sigma=9,
image_ip1_dict=None, mask_ip1=None, model_ip1="plus_face", mode_ip1="original", scale_ip1=0.7,
image_ip2_dict=None, mask_ip2=None, model_ip2="base", mode_ip2="style", scale_ip2=0.7,
upscaler_model_path=None, upscaler_increases_size=1.0, upscaler_tile_size=0, upscaler_tile_overlap=8, hires_steps=30, hires_denoising_strength=0.55,
hires_sampler="Use same sampler", hires_schedule_type="Use same schedule type", hires_guidance_scale=-1, hires_prompt="", hires_negative_prompt="",
adetailer_inpaint_only=True, adetailer_verbose=False, adetailer_sampler="Use same sampler", adetailer_active_a=False,
prompt_ad_a="", negative_prompt_ad_a="", strength_ad_a=0.35, face_detector_ad_a=True, person_detector_ad_a=True, hand_detector_ad_a=False,
mask_dilation_a=4, mask_blur_a=4, mask_padding_a=32, adetailer_active_b=False, prompt_ad_b="", negative_prompt_ad_b="", strength_ad_b=0.35,
face_detector_ad_b=True, person_detector_ad_b=True, hand_detector_ad_b=False, mask_dilation_b=4, mask_blur_b=4, mask_padding_b=32,
active_textual_inversion=False, face_restoration_model=None, face_restoration_visibility=1., face_restoration_weight=.5,
gpu_duration=59, translate=False, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
MAX_SEED = np.iinfo(np.int32).max
image_mask = image_control_dict['layers'][0] if isinstance(image_control_dict, dict) and not image_mask else image_mask
image_control = image_control_dict['background'] if isinstance(image_control_dict, dict) else None
mask_ip1 = image_ip1_dict['layers'][0] if isinstance(image_ip1_dict, dict) and not mask_ip1 else mask_ip1
image_ip1 = image_ip1_dict['background'] if isinstance(image_ip1_dict, dict) else None
mask_ip2 = image_ip2_dict['layers'][0] if isinstance(image_ip2_dict, dict) and not mask_ip1 else mask_ip1
image_ip2 = image_ip2_dict['background'] if isinstance(image_ip2_dict, dict) else None
style_prompt = None
style_json = None
hires_before_adetailer = False
hires_after_adetailer = True
loop_generation = 1
leave_progress_bar = True
disable_progress_bar = False
image_previews = True
display_images = False
save_generated_images = False
filename_pattern = "model,seed"
image_storage_location = "./images"
retain_compel_previous_load = False
retain_detailfix_model_previous_load = False
retain_hires_model_previous_load = False
t2i_adapter_preprocessor = True
adapter_conditioning_scale = 1
adapter_conditioning_factor = 0.55
xformers_memory_efficient_attention = False
generator_in_cpu = False
retain_task_cache = False
load_lora_cpu = False
verbose_info = False
images: list[tuple[PIL.Image.Image, str | None]] = []
progress(0, desc="Preparing...")
if randomize_seed: seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed).seed()
if translate:
prompt = translate_to_en(prompt)
negative_prompt = translate_to_en(prompt)
prompt, negative_prompt = insert_model_recom_prompt(prompt, negative_prompt, model_name, recom_prompt)
progress(0.5, desc="Preparing...")
lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt = \
set_prompt_loras(prompt, prompt_syntax, model_name, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt, lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt)
lora1 = get_valid_lora_path(lora1)
lora2 = get_valid_lora_path(lora2)
lora3 = get_valid_lora_path(lora3)
lora4 = get_valid_lora_path(lora4)
lora5 = get_valid_lora_path(lora5)
lora6 = get_valid_lora_path(lora6)
lora7 = get_valid_lora_path(lora7)
progress(1, desc="Preparation completed. Starting inference...")
progress(0, desc="Loading model...")
for _ in sd_gen.load_new_model(valid_model_name(model_name), vae, task, controlnet_model):
pass
progress(1, desc="Model loaded.")
progress(0, desc="Starting Inference...")
for info_state, stream_images, info_images in sd_gen_generate_pipeline(prompt, negative_prompt, 1, num_inference_steps,
guidance_scale, clip_skip, generator, lora1, lora1_wt, lora2, lora2_wt, lora3, lora3_wt,
lora4, lora4_wt, lora5, lora5_wt, lora6, lora6_wt, lora7, lora7_wt, sampler, schedule_type, schedule_prediction_type,
height, width, model_name, vae, task, image_control, preprocessor_name, preprocess_resolution, image_resolution,
style_prompt, style_json, image_mask, strength, low_threshold, high_threshold, value_threshold, distance_threshold,
recolor_gamma_correction, tile_blur_sigma, control_net_output_scaling, control_net_start_threshold, control_net_stop_threshold,
active_textual_inversion, prompt_syntax, upscaler_model_path, upscaler_increases_size, upscaler_tile_size, upscaler_tile_overlap,
hires_steps, hires_denoising_strength, hires_sampler, hires_prompt, hires_negative_prompt, hires_before_adetailer, hires_after_adetailer,
hires_schedule_type, hires_guidance_scale, controlnet_model, loop_generation, leave_progress_bar, disable_progress_bar, image_previews,
display_images, save_generated_images, filename_pattern, image_storage_location, retain_compel_previous_load, retain_detailfix_model_previous_load,
retain_hires_model_previous_load, t2i_adapter_preprocessor, adapter_conditioning_scale, adapter_conditioning_factor, xformers_memory_efficient_attention,
free_u, generator_in_cpu, adetailer_inpaint_only, adetailer_verbose, adetailer_sampler, adetailer_active_a, prompt_ad_a, negative_prompt_ad_a,
strength_ad_a, face_detector_ad_a, person_detector_ad_a, hand_detector_ad_a, mask_dilation_a, mask_blur_a, mask_padding_a,
adetailer_active_b, prompt_ad_b, negative_prompt_ad_b, strength_ad_b, face_detector_ad_b, person_detector_ad_b, hand_detector_ad_b,
mask_dilation_b, mask_blur_b, mask_padding_b, retain_task_cache, guidance_rescale, image_ip1, mask_ip1, model_ip1, mode_ip1, scale_ip1,
image_ip2, mask_ip2, model_ip2, mode_ip2, scale_ip2, pag_scale, face_restoration_model, face_restoration_visibility, face_restoration_weight,
load_lora_cpu, verbose_info, gpu_duration
):
images = stream_images if isinstance(stream_images, list) else images
progress(1, desc="Inference completed.")
output_image = images[0][0] if images else None
gc.collect()
return output_image
#@spaces.GPU
def _infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps,
model_name=load_diffusers_format_model[0], lora1=None, lora1_wt=1.0, lora2=None, lora2_wt=1.0,
lora3=None, lora3_wt=1.0, lora4=None, lora4_wt=1.0, lora5=None, lora5_wt=1.0, lora6=None, lora6_wt=1.0, lora7=None, lora7_wt=1.0,
task=TASK_MODEL_LIST[0], prompt_syntax="Classic", sampler="Euler", vae=None, schedule_type=SCHEDULE_TYPE_OPTIONS[0], schedule_prediction_type=SCHEDULE_PREDICTION_TYPE_OPTIONS[0],
clip_skip=True, pag_scale=0.0, free_u=False, guidance_rescale=0., image_control_dict=None, image_mask=None, strength=0.35, image_resolution=1024,
controlnet_model=DIFFUSERS_CONTROLNET_MODEL[0], control_net_output_scaling=1.0, control_net_start_threshold=0., control_net_stop_threshold=1.,
preprocessor_name="Canny", preprocess_resolution=512, low_threshold=100, high_threshold=200,
value_threshold=0.1, distance_threshold=0.1, recolor_gamma_correction=1., tile_blur_sigma=9,
image_ip1_dict=None, mask_ip1=None, model_ip1="plus_face", mode_ip1="original", scale_ip1=0.7,
image_ip2_dict=None, mask_ip2=None, model_ip2="base", mode_ip2="style", scale_ip2=0.7,
upscaler_model_path=None, upscaler_increases_size=1.0, upscaler_tile_size=0, upscaler_tile_overlap=8, hires_steps=30, hires_denoising_strength=0.55,
hires_sampler="Use same sampler", hires_schedule_type="Use same schedule type", hires_guidance_scale=-1, hires_prompt="", hires_negative_prompt="",
adetailer_inpaint_only=True, adetailer_verbose=False, adetailer_sampler="Use same sampler", adetailer_active_a=False,
prompt_ad_a="", negative_prompt_ad_a="", strength_ad_a=0.35, face_detector_ad_a=True, person_detector_ad_a=True, hand_detector_ad_a=False,
mask_dilation_a=4, mask_blur_a=4, mask_padding_a=32, adetailer_active_b=False, prompt_ad_b="", negative_prompt_ad_b="", strength_ad_b=0.35,
face_detector_ad_b=True, person_detector_ad_b=True, hand_detector_ad_b=False, mask_dilation_b=4, mask_blur_b=4, mask_padding_b=32,
active_textual_inversion=False, face_restoration_model=None, face_restoration_visibility=1., face_restoration_weight=.5,
gpu_duration=59, translate=False, recom_prompt=True, progress=gr.Progress(track_tqdm=True)):
return gr.update()
infer.zerogpu = True
_infer.zerogpu = True
def pass_result(result):
return result
def get_samplers():
return scheduler_names
def get_vaes():
return vae_model_list
def update_task_options(model_name, task_name):
new_choices = MODEL_TYPE_TASK[get_model_type(valid_model_name(model_name))]
if task_name not in new_choices:
task_name = "txt2img"
return gr.update(value=task_name, choices=new_choices)
def change_preprocessor_choices(task):
task = TASK_STABLEPY[task]
if task in TASK_AND_PREPROCESSORS.keys():
choices_task = TASK_AND_PREPROCESSORS[task]
else:
choices_task = TASK_AND_PREPROCESSORS["canny"]
return gr.update(choices=choices_task, value=choices_task[0])
def get_ti_choices(model_name: str):
return get_embed_list(get_model_pipeline(valid_model_name(model_name)))
def update_textual_inversion(active_textual_inversion: bool, model_name: str):
return gr.update(choices=get_ti_choices(model_name) if active_textual_inversion else [])
cached_diffusers_model_tupled_list = get_tupled_model_list(load_diffusers_format_model)
def get_diffusers_model_list(state: dict = {}):
show_diffusers_model_list_detail = get_state(state, "show_diffusers_model_list_detail")
if show_diffusers_model_list_detail:
return cached_diffusers_model_tupled_list
else:
return load_diffusers_format_model
def enable_diffusers_model_detail(is_enable: bool = False, model_name: str = "", state: dict = {}):
show_diffusers_model_list_detail = is_enable
new_value = model_name
index = 0
if model_name in set(load_diffusers_format_model):
index = load_diffusers_format_model.index(model_name)
if is_enable:
new_value = cached_diffusers_model_tupled_list[index][1]
else:
new_value = load_diffusers_format_model[index]
set_state(state, "show_diffusers_model_list_detail", show_diffusers_model_list_detail)
return gr.update(value=is_enable), gr.update(value=new_value, choices=get_diffusers_model_list(state)), state
quality_prompt_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "lowres",
},
{
"name": "Animagine Common",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Pony Anime Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Pony Common",
"prompt": "source_anime, score_9, score_8_up, score_7_up",
"negative_prompt": "source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends",
},
{
"name": "Animagine Standard v3.0",
"prompt": "masterpiece, best quality",
"negative_prompt": "lowres, bad anatomy, bad hands, text, error, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality, normal quality, jpeg artifacts, signature, watermark, username, blurry, artist name",
},
{
"name": "Animagine Standard v3.1",
"prompt": "masterpiece, best quality, very aesthetic, absurdres",
"negative_prompt": "lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]",
},
{
"name": "Animagine Light v3.1",
"prompt": "(masterpiece), best quality, very aesthetic, perfect face",
"negative_prompt": "(low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn",
},
{
"name": "Animagine Heavy v3.1",
"prompt": "(masterpiece), (best quality), (ultra-detailed), very aesthetic, illustration, disheveled hair, perfect composition, moist skin, intricate details",
"negative_prompt": "longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair, extra digit, fewer digits, cropped, worst quality, low quality, very displeasing",
},
]
style_list = [
{
"name": "None",
"prompt": "",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still, emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo, 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork, anime style, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style, vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art, digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art, low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art, magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style, cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model, octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
preset_styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
preset_quality = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in quality_prompt_list}
def process_style_prompt(prompt: str, neg_prompt: str, styles_key: str = "None", quality_key: str = "None"):
def to_list(s):
return [x.strip() for x in s.split(",") if not s == ""]
def list_sub(a, b):
return [e for e in a if e not in b]
def list_uniq(l):
return sorted(set(l), key=l.index)
animagine_ps = to_list("anime artwork, anime style, vibrant, studio anime, highly detailed, masterpiece, best quality, very aesthetic, absurdres")
animagine_nps = to_list("lowres, (bad), text, error, fewer, extra, missing, worst quality, jpeg artifacts, low quality, watermark, unfinished, displeasing, oldest, early, chromatic aberration, signature, extra digits, artistic error, username, scan, [abstract]")
pony_ps = to_list("source_anime, score_9, score_8_up, score_7_up, masterpiece, best quality, very aesthetic, absurdres")
pony_nps = to_list("source_pony, source_furry, source_cartoon, score_6, score_5, score_4, busty, ugly face, mutated hands, low res, blurry face, black and white, the simpsons, overwatch, apex legends")
prompts = to_list(prompt)
neg_prompts = to_list(neg_prompt)
all_styles_ps = []
all_styles_nps = []
for d in style_list:
all_styles_ps.extend(to_list(str(d.get("prompt", ""))))
all_styles_nps.extend(to_list(str(d.get("negative_prompt", ""))))
all_quality_ps = []
all_quality_nps = []
for d in quality_prompt_list:
all_quality_ps.extend(to_list(str(d.get("prompt", ""))))
all_quality_nps.extend(to_list(str(d.get("negative_prompt", ""))))
quality_ps = to_list(preset_quality[quality_key][0])
quality_nps = to_list(preset_quality[quality_key][1])
styles_ps = to_list(preset_styles[styles_key][0])
styles_nps = to_list(preset_styles[styles_key][1])
prompts = list_sub(prompts, animagine_ps + pony_ps + all_styles_ps + all_quality_ps)
neg_prompts = list_sub(neg_prompts, animagine_nps + pony_nps + all_styles_nps + all_quality_nps)
last_empty_p = [""] if not prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
last_empty_np = [""] if not neg_prompts and type != "None" and type != "Auto" and styles_key != "None" and quality_key != "None" else []
if type == "Animagine":
prompts = prompts + animagine_ps
neg_prompts = neg_prompts + animagine_nps
elif type == "Pony":
prompts = prompts + pony_ps
neg_prompts = neg_prompts + pony_nps
prompts = prompts + styles_ps + quality_ps
neg_prompts = neg_prompts + styles_nps + quality_nps
prompt = ", ".join(list_uniq(prompts) + last_empty_p)
neg_prompt = ", ".join(list_uniq(neg_prompts) + last_empty_np)
return gr.update(value=prompt), gr.update(value=neg_prompt)
def save_images(images: list[Image.Image], metadatas: list[str]):
from PIL import PngImagePlugin
try:
output_images = []
for image, metadata in zip(images, metadatas):
info = PngImagePlugin.PngInfo()
info.add_text("parameters", metadata)
savefile = "image.png"
image.save(savefile, "PNG", pnginfo=info)
output_images.append(str(Path(savefile).resolve()))
return output_images
except Exception as e:
print(f"Failed to save image file: {e}")
raise Exception(f"Failed to save image file:") from e
|