File size: 19,776 Bytes
d8cf478 efabdf9 6154c13 d8cf478 52d1750 6154c13 dc11fb3 3498a52 f245408 d8cf478 0e538d2 7f9e80f 0e538d2 efabdf9 577dd09 8704528 577dd09 52d1750 d8cf478 52d1750 d8cf478 52d1750 18ab870 3035b84 d8cf478 3035b84 d8cf478 3035b84 d8cf478 5f0d39e d8cf478 0e538d2 d8cf478 5b74576 d8cf478 18ab870 3035b84 efabdf9 5b74576 5f0d39e 5b74576 d8cf478 5b74576 3035b84 5b74576 d8cf478 3035b84 52d1750 3035b84 d8cf478 3035b84 18ab870 d8cf478 5b74576 d8cf478 1ed82ec efabdf9 5b74576 efabdf9 652d8f6 1ed82ec 652d8f6 3035b84 5b74576 7839697 d8cf478 5b74576 d8cf478 8704528 d8cf478 efabdf9 d8cf478 efabdf9 d8cf478 cd2003a d8cf478 5b74576 efabdf9 5b74576 efabdf9 5b74576 efabdf9 3035b84 efabdf9 1ed82ec efabdf9 cd2003a efabdf9 1ed82ec efabdf9 5b74576 efabdf9 5b74576 3035b84 efabdf9 5b74576 efabdf9 5b74576 efabdf9 3035b84 efabdf9 3035b84 efabdf9 5b74576 efabdf9 cd2003a efabdf9 3035b84 efabdf9 5b74576 efabdf9 3035b84 652d8f6 cd2003a 652d8f6 3035b84 652d8f6 cd2003a 652d8f6 3035b84 652d8f6 3035b84 7f9e80f 18ab870 a0ba53d 18ab870 a0ba53d 18ab870 7f9e80f 18ab870 577dd09 18ab870 3035b84 18ab870 5b74576 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 7f9e80f 3035b84 7f9e80f 5b74576 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 7f9e80f 3035b84 7f9e80f 18ab870 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 7f9e80f 18ab870 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f 5b74576 18ab870 3035b84 7f9e80f 3035b84 7f9e80f 3035b84 7f9e80f f245408 7f9e80f 8704528 52d1750 dc11fb3 52d1750 12536a4 52d1750 12536a4 dc11fb3 330cbe3 dc11fb3 00d49a3 5f0d39e 00d49a3 5f0d39e 00d49a3 5b74576 00d49a3 3498a52 577dd09 00d49a3 577dd09 3035b84 5b74576 577dd09 3498a52 577dd09 00d49a3 577dd09 3035b84 5b74576 577dd09 3035b84 3498a52 8704528 3498a52 8704528 5b74576 8704528 5b74576 8704528 3035b84 5b74576 8704528 5b74576 8704528 3035b84 5b74576 8704528 5f0d39e 6154c13 7839697 dc11fb3 6154c13 d8cf478 7839697 5b74576 7839697 5b74576 7839697 5b74576 7839697 5b74576 7839697 1ed82ec 7839697 d8cf478 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 |
import gradio as gr
import pandas as pd
import duckdb
import logging
from scripts.metrics import (
compute_weekly_metrics_by_market_creator,
compute_daily_metrics_by_market_creator,
compute_winning_metrics_by_trader,
)
from tabs.trader_plots import (
plot_trader_metrics_by_market_creator,
default_trader_metric,
trader_metric_choices,
get_metrics_text,
plot_winning_metric_per_trader,
get_interpretation_text,
plot_total_bet_amount,
plot_active_traders,
)
from tabs.daily_graphs import (
get_current_week_data,
plot_daily_metrics,
trader_daily_metric_choices,
default_daily_metric,
)
from scripts.utils import get_traders_family
from tabs.market_plots import (
plot_kl_div_per_market,
plot_total_bet_amount_per_trader_per_market,
)
def get_logger():
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
# stream handler and formatter
stream_handler = logging.StreamHandler()
stream_handler.setLevel(logging.DEBUG)
formatter = logging.Formatter(
"%(asctime)s - %(name)s - %(levelname)s - %(message)s"
)
stream_handler.setFormatter(formatter)
logger.addHandler(stream_handler)
return logger
logger = get_logger()
def get_all_data():
"""
Get parquet files from weekly stats and new generated
"""
logger.info("Getting traders data")
con = duckdb.connect(":memory:")
# Query to fetch data from all_trades_profitability.parquet
query1 = f"""
SELECT *
FROM read_parquet('./data/all_trades_profitability.parquet')
"""
df1 = con.execute(query1).fetchdf()
logger.info("Got all data from all_trades_profitability.parquet")
# Query to fetch data from closed_markets_div.parquet
query2 = f"""
SELECT *
FROM read_parquet('./data/closed_markets_div.parquet')
"""
df2 = con.execute(query2).fetchdf()
logger.info("Got all data from closed_markets_div.parquet")
# Query to fetch daily live data
query3 = f"""
SELECT *
FROM read_parquet('./data/daily_info.parquet')
"""
df3 = con.execute(query3).fetchdf()
# Query to fetch daily live data of unknown daily traders
query4 = f"""
SELECT *
FROM read_parquet('./data/unknown_traders.parquet')
"""
df4 = con.execute(query4).fetchdf()
con.close()
return df1, df2, df3, df4
def prepare_data():
all_trades, closed_markets, daily_info, unknown_traders = get_all_data()
all_trades["creation_date"] = all_trades["creation_timestamp"].dt.date
# nr-trades variable
volume_trades_per_trader_and_market = (
all_trades.groupby(["trader_address", "title"])["roi"]
.count()
.reset_index(name="nr_trades_per_market")
)
traders_data = pd.merge(
all_trades, volume_trades_per_trader_and_market, on=["trader_address", "title"]
)
daily_info["creation_date"] = daily_info["creation_timestamp"].dt.date
unknown_traders["creation_date"] = unknown_traders["creation_timestamp"].dt.date
# adding the trader family column
traders_data["trader_family"] = traders_data.apply(
lambda x: get_traders_family(x), axis=1
)
print(traders_data.head())
traders_data = traders_data.sort_values(by="creation_timestamp", ascending=True)
unknown_traders = unknown_traders.sort_values(
by="creation_timestamp", ascending=True
)
traders_data["month_year_week"] = (
traders_data["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
unknown_traders["month_year_week"] = (
unknown_traders["creation_timestamp"].dt.to_period("W").dt.strftime("%b-%d")
)
closed_markets["month_year_week"] = (
closed_markets["opening_datetime"].dt.to_period("W").dt.strftime("%b-%d")
)
return traders_data, closed_markets, daily_info, unknown_traders
traders_data, closed_markets, daily_info, unknown_traders = prepare_data()
demo = gr.Blocks()
# get weekly metrics by market creator: qs, pearl or all.
weekly_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
traders_data
)
weekly_o_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
traders_data, trader_filter="Olas"
)
weekly_non_olas_metrics_by_market_creator = compute_weekly_metrics_by_market_creator(
traders_data, trader_filter="non_Olas"
)
weekly_unknown_trader_metrics_by_market_creator = None
if len(unknown_traders) > 0:
weekly_unknown_trader_metrics_by_market_creator = (
compute_weekly_metrics_by_market_creator(
unknown_traders, trader_filter=None, unknown_trader=True
)
)
weekly_winning_metrics = compute_winning_metrics_by_trader(traders_data=traders_data)
weekly_non_olas_winning_metrics = compute_winning_metrics_by_trader(
traders_data=traders_data, trader_filter="non_Olas"
)
with demo:
gr.HTML("<h1>Traders monitoring dashboard </h1>")
gr.Markdown("This app shows the weekly performance of the traders in Olas Predict.")
with gr.Tabs():
with gr.TabItem("🔥 Weekly metrics"):
with gr.Row():
gr.Markdown("# Weekly metrics of all traders")
with gr.Row():
trader_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type=None)
def update_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_metrics_by_market_creator,
)
trader_details_selector.change(
update_trader_details,
inputs=trader_details_selector,
outputs=trader_markets_plot,
)
with gr.Row():
gr.Markdown("# Weekly metrics of 🌊 Olas traders")
with gr.Row():
trader_o_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
o_trader_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_o_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type="Olas")
def update_a_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_o_metrics_by_market_creator,
)
trader_o_details_selector.change(
update_a_trader_details,
inputs=trader_o_details_selector,
outputs=o_trader_markets_plot,
)
# Non-Olas traders graph
with gr.Row():
gr.Markdown("# Weekly metrics of Non-Olas traders")
with gr.Row():
trader_no_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_no_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_non_olas_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(trader_type="non_Olas")
def update_no_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_non_olas_metrics_by_market_creator,
)
trader_no_details_selector.change(
update_no_trader_details,
inputs=trader_no_details_selector,
outputs=trader_no_markets_plot,
)
# Unknown traders graph
if weekly_unknown_trader_metrics_by_market_creator is not None:
with gr.Row():
gr.Markdown("# Weekly metrics of Unclassified traders")
with gr.Row():
trader_u_details_selector = gr.Dropdown(
label="Select a weekly trader metric",
choices=trader_metric_choices,
value=default_trader_metric,
)
with gr.Row():
with gr.Column(scale=3):
trader_u_markets_plot = plot_trader_metrics_by_market_creator(
metric_name=default_trader_metric,
traders_df=weekly_unknown_trader_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(
trader_type="unclassified"
)
def update_u_trader_details(trader_detail):
return plot_trader_metrics_by_market_creator(
metric_name=trader_detail,
traders_df=weekly_unknown_trader_metrics_by_market_creator,
)
trader_u_details_selector.change(
update_u_trader_details,
inputs=trader_u_details_selector,
outputs=trader_u_markets_plot,
)
with gr.TabItem("📅 Daily metrics"):
live_trades_current_week = get_current_week_data(trades_df=daily_info)
if len(live_trades_current_week) > 0:
live_metrics_by_market_creator = (
compute_daily_metrics_by_market_creator(
live_trades_current_week, trader_filter=None, live_metrics=True
)
)
else:
live_metrics_by_market_creator = pd.DataFrame()
with gr.Row():
gr.Markdown("# Daily live metrics for all trades")
with gr.Row():
trade_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
trade_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_trade_live_details(trade_detail, trade_live_details_plot):
new_a_plot = plot_daily_metrics(
metric_name=trade_detail, trades_df=live_metrics_by_market_creator
)
return new_a_plot
trade_live_details_selector.change(
update_trade_live_details,
inputs=[trade_live_details_selector, trade_live_details_plot],
outputs=[trade_live_details_plot],
)
# Olas traders
with gr.Row():
gr.Markdown("# Daily live metrics for 🌊 Olas traders")
with gr.Row():
o_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
o_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_a_trader_live_details(trade_detail, a_trader_live_details_plot):
o_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="Olas",
)
return o_trader_plot
o_trader_live_details_selector.change(
update_a_trader_live_details,
inputs=[o_trader_live_details_selector, o_trader_live_details_plot],
outputs=[o_trader_live_details_plot],
)
with gr.Row():
gr.Markdown("# Daily live metrics for Non-Olas traders")
with gr.Row():
no_trader_live_details_selector = gr.Dropdown(
label="Select a daily live metric",
choices=trader_daily_metric_choices,
value=default_daily_metric,
)
with gr.Row():
with gr.Column(scale=3):
no_trader_live_details_plot = plot_daily_metrics(
metric_name=default_daily_metric,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
with gr.Column(scale=1):
trade_details_text = get_metrics_text(daily=True)
def update_na_trader_live_details(
trade_detail, no_trader_live_details_plot
):
no_trader_plot = plot_daily_metrics(
metric_name=trade_detail,
trades_df=live_metrics_by_market_creator,
trader_filter="non_Olas",
)
return no_trader_plot
no_trader_live_details_selector.change(
update_na_trader_live_details,
inputs=[no_trader_live_details_selector, no_trader_live_details_plot],
outputs=[no_trader_live_details_plot],
)
with gr.TabItem("⚙️ Active traders"):
with gr.Row():
gr.Markdown("# Active traders for all markets by trader categories")
with gr.Row():
active_traders_plot = plot_active_traders(traders_data, unknown_traders)
with gr.Row():
gr.Markdown("# Active traders for Pearl markets by trader categories")
with gr.Row():
active_traders_plot = plot_active_traders(
traders_data, unknown_traders, market_creator="pearl"
)
with gr.Row():
gr.Markdown(
"# Active traders for Quickstart markets by trader categories"
)
with gr.Row():
active_traders_plot = plot_active_traders(
traders_data, unknown_traders, market_creator="quickstart"
)
with gr.TabItem("📉 Markets Kullback–Leibler divergence"):
with gr.Row():
gr.Markdown(
"# Weekly Market Prediction Accuracy for Closed Markets (Kullback-Leibler Divergence)"
)
with gr.Row():
gr.Markdown(
"Aka, how much off is the market prediction’s accuracy from the real outcome of the event. Values capped at 20 for market outcomes completely opposite to the real outcome."
)
with gr.Row():
trade_details_text = get_metrics_text()
with gr.Row():
with gr.Column(scale=3):
kl_div_plot = plot_kl_div_per_market(closed_markets=closed_markets)
with gr.Column(scale=1):
interpretation = get_interpretation_text()
with gr.TabItem("💰 Money invested per trader type"):
with gr.Row():
gr.Markdown("# Weekly total bet amount per trader type for all markets")
with gr.Row():
total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="all"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Pearl markets"
)
with gr.Row():
o_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="pearl"
)
with gr.Row():
gr.Markdown(
"# Weekly total bet amount per trader type for Quickstart markets"
)
with gr.Row():
no_trader_total_bet_amount = plot_total_bet_amount(
traders_data, market_filter="quickstart"
)
with gr.TabItem("💰 Money invested per market"):
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for all traders")
with gr.Row():
bet_amounts = plot_total_bet_amount_per_trader_per_market(traders_data)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for 🌊 Olas traders")
with gr.Row():
o_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
traders_data, trader_filter="Olas"
)
with gr.Row():
gr.Markdown("# Weekly bet amounts per market for Non-Olas traders")
with gr.Row():
no_trader_bet_amounts = plot_total_bet_amount_per_trader_per_market(
traders_data, trader_filter="non_Olas"
)
with gr.TabItem("🎖️Weekly winning trades % per trader"):
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from all traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from 🌊 Olas traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(weekly_winning_metrics)
# non_Olasic traders
with gr.Row():
gr.Markdown("# Weekly winning trades percentage from Non-Olas traders")
with gr.Row():
metrics_text = get_metrics_text()
with gr.Row():
winning_metric = plot_winning_metric_per_trader(
weekly_non_olas_winning_metrics
)
demo.queue(default_concurrency_limit=40).launch()
|