Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoTokenizer | |
ref_model = AutoModelForCausalLM.from_pretrained("EleutherAI/pythia-70m-deduped-v0", torch_dtype=torch.bfloat16) | |
peft_model_id = "w601sxs/pythia-70m-instruct-orca-chkpt-64000" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = PeftModel.from_pretrained(ref_model, peft_model_id) | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
model.eval() | |
def predict(text): | |
inputs = tokenizer(prompt, return_tensors="pt") | |
with torch.no_grad(): | |
outputs = model.generate(input_ids=inputs["input_ids"], max_new_tokens=10) | |
out_text = tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0]) | |
return out_text | |
demo = gr.Interface( | |
fn=predict, | |
inputs='text', | |
outputs='text', | |
) | |
demo.launch() | |