File size: 6,191 Bytes
5755412 f82c314 eccd8f6 4e66e3d b446d41 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 b26485f 4e66e3d b26485f 4e66e3d f82c314 4e66e3d b26485f 4e66e3d b26485f 4e66e3d b26485f 4e66e3d eccd8f6 5755412 eccd8f6 4e66e3d eccd8f6 f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d eccd8f6 b26485f 4e66e3d b26485f f82c314 4e66e3d f82c314 4e66e3d f82c314 b446d41 4e66e3d b26485f 4e66e3d b26485f 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d eccd8f6 4e66e3d b446d41 4e66e3d b26485f 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 4e66e3d f82c314 eccd8f6 5755412 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 |
import gradio as gr
import spaces
import torch
from datasets import load_dataset
from transformers import (
AutoConfig,
AutoTokenizer,
AutoModelForCausalLM,
DataCollatorForLanguageModeling,
Trainer,
TrainingArguments,
pipeline
)
##############################################################################
# ZeroGPU constraints:
# 1) No GPU calls in top-level code
# 2) Decorate GPU-using functions with @spaces.GPU(...)
##############################################################################
TEXT_PIPELINE = None # We'll store an inference pipeline after training (if any).
# We'll train on a subset of WikiText-2 to keep it short for ZeroGPU demonstration.
NUM_EXAMPLES = 1000
@spaces.GPU(duration=300) # 5 minutes to do a quick demo train
def finetune_small_subset():
"""
Demonstration:
- Loads 'wuhp/myr1' (DeepSeek)
- Finetunes on a small subset of WikiText-2
- Disables fp16 to avoid "Attempting to unscale FP16 gradients" error
- Saves model to 'finetuned_myr1'
- Reloads as pipeline for inference
"""
# 1) Load dataset
ds = load_dataset("wikitext", "wikitext-2-raw-v1", split="train")
ds = ds.select(range(min(NUM_EXAMPLES, len(ds))))
# 2) Load config, tokenizer, model
config = AutoConfig.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
trust_remote_code=True
)
# If your GPU supports BF16 (e.g. A100), you can try:
# bf16 = True, and fp16 = False
# Otherwise, just keep fp16=False
# We'll do bf16=False so we definitely skip half-precision
# (which avoids the "Attempting to unscale FP16 gradients" error).
bf16 = False
fp16 = False
model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
config=config,
# Only auto-detect if we do normal float32 or bfloat16.
# (We do not want normal fp16 in training.)
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
device_map="auto",
trust_remote_code=True
)
# 3) Tokenize data
def tokenize_fn(ex):
return tokenizer(ex["text"], truncation=True, max_length=512)
ds = ds.map(tokenize_fn, batched=True, remove_columns=["text"])
ds.set_format("torch")
collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
# 4) TrainingArguments
training_args = TrainingArguments(
output_dir="finetuned_myr1",
num_train_epochs=1,
per_device_train_batch_size=1,
gradient_accumulation_steps=2,
logging_steps=10,
save_steps=999999, # won't save mid-training
save_total_limit=1,
# Turn off half precision explicitly
fp16=fp16,
bf16=bf16,
# If the above doesn't fix it, remove advanced features that auto uses
# gradient scaling, or do more manual approach.
)
# 5) Build Trainer
trainer = Trainer(
model=model,
args=training_args,
train_dataset=ds,
data_collator=collator
)
# 6) Train
trainer.train()
# 7) Save final
trainer.save_model("finetuned_myr1")
tokenizer.save_pretrained("finetuned_myr1")
# 8) Reload the newly trained model as a pipeline
finetuned_model = AutoModelForCausalLM.from_pretrained(
"finetuned_myr1",
torch_dtype=torch.bfloat16 if bf16 else torch.float32,
device_map="auto",
trust_remote_code=True
)
global TEXT_PIPELINE
TEXT_PIPELINE = pipeline("text-generation", model=finetuned_model, tokenizer=tokenizer)
return "Finetuning complete! Model reloaded for inference."
def ensure_pipeline():
"""
If we haven't finetuned yet, or if TEXT_PIPELINE is None,
load the original model from 'wuhp/myr1' for inference.
"""
global TEXT_PIPELINE
if TEXT_PIPELINE is None:
tokenizer = AutoTokenizer.from_pretrained("wuhp/myr1", subfolder="myr1", trust_remote_code=True)
# We'll do float32 for inference if no BF16 or fp16.
model = AutoModelForCausalLM.from_pretrained(
"wuhp/myr1",
subfolder="myr1",
torch_dtype=torch.float32,
device_map="auto",
trust_remote_code=True
)
TEXT_PIPELINE = pipeline("text-generation", model=model, tokenizer=tokenizer)
return TEXT_PIPELINE
@spaces.GPU(duration=120) # up to 2 minutes for text generation
def predict(prompt, temperature, top_p, min_new_tokens, max_new_tokens):
"""
Generates text from the (finetuned) pipeline or the original model.
Allows user to adjust temperature, top_p, and token range [260..5000].
"""
pipe = ensure_pipeline()
out = pipe(
prompt,
temperature=float(temperature),
top_p=float(top_p),
min_new_tokens=int(min_new_tokens),
max_new_tokens=int(max_new_tokens),
do_sample=True
)
return out[0]["generated_text"]
# Build Gradio UI
with gr.Blocks() as demo:
gr.Markdown("## ZeroGPU Mini-Finetuning (No FP16) + Long Text Generation")
# 1) Button to run finetune_small_subset()
finetune_btn = gr.Button("Finetune WikiText-2 (Subset)")
status_box = gr.Textbox(label="Finetune Status")
finetune_btn.click(fn=finetune_small_subset, outputs=status_box)
gr.Markdown("Use 'Generate' to produce text from either the newly finetuned or original model.")
prompt_in = gr.Textbox(lines=3, label="Prompt")
temperature = gr.Slider(0.0, 1.5, value=0.7, step=0.1, label="Temperature")
top_p = gr.Slider(0.0, 1.0, value=0.9, step=0.05, label="Top-p")
min_tokens = gr.Slider(260, 5000, value=260, step=10, label="Min New Tokens")
max_tokens = gr.Slider(260, 5000, value=500, step=50, label="Max New Tokens")
output_box = gr.Textbox(label="Generated Text", lines=12)
gen_btn = gr.Button("Generate")
gen_btn.click(
fn=predict,
inputs=[prompt_in, temperature, top_p, min_tokens, max_tokens],
outputs=output_box
)
demo.launch()
|