metadata
base_model: srikarvar/fine_tuned_model_5
library_name: sentence-transformers
metrics:
- cosine_accuracy
- cosine_accuracy_threshold
- cosine_f1
- cosine_f1_threshold
- cosine_precision
- cosine_recall
- cosine_ap
- dot_accuracy
- dot_accuracy_threshold
- dot_f1
- dot_f1_threshold
- dot_precision
- dot_recall
- dot_ap
- manhattan_accuracy
- manhattan_accuracy_threshold
- manhattan_f1
- manhattan_f1_threshold
- manhattan_precision
- manhattan_recall
- manhattan_ap
- euclidean_accuracy
- euclidean_accuracy_threshold
- euclidean_f1
- euclidean_f1_threshold
- euclidean_precision
- euclidean_recall
- euclidean_ap
- max_accuracy
- max_accuracy_threshold
- max_f1
- max_f1_threshold
- max_precision
- max_recall
- max_ap
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:560
- loss:OnlineContrastiveLoss
widget:
- source_sentence: >-
The `Garage` class has a `to_services` method which is used to transform
tasks into a list of `ServiceRecord` objects that are scheduled.
sentences:
- >-
The `to_services` method in the Garage class is used to convert Garage
tasks to a list of scheduled `ServiceRecord` objects.
- It returns a `Recipe` for the specified serving size.
- >-
The AI community is a group of individuals who collaborate on models,
datasets, and tools to advance artificial intelligence research.
- source_sentence: >-
The main version of the guide contains the INSTALLATION page. Click the
link to be directed there.
sentences:
- You can bake bread by following the Bake bread tutorial.
- >-
The base class for documents generated from a data stream is
StreamBasedBuilder.
- >-
You can find the INSTALLATION page in the main version of the guide.
Click on the provided link to redirect to the main version.
- source_sentence: >-
A major distinction between a ProductList and an InventoryList is that a
ProductList allows for random access to the items, while an InventoryList
updates gradually as it is navigated.
sentences:
- >-
The how-to guides for the platform include Setup, Processing, Streaming,
TensorFlow integration, PyTorch integration, Cache management, Cloud
storage, Search index, Analytics, and Data Pipelines.
- >-
Yes, there is a tutorial for analyzing stock market data. You can find
it at the link provided: /docs/stocks/v2.10.0/data_analysis.
- >-
The main difference between a ProductList and an InventoryList is that a
ProductList provides random access to the items, while an InventoryList
updates progressively as you browse the list.
- source_sentence: >-
ImageFolder is a dataset builder that eliminates the need for coding to
quickly load a dataset with thousands of image files. It will
automatically incorporate any extra data such as resolution, format, or
tags, provided that it is included in a metadata file
(metadata.csv/metadata.jsonl).
sentences:
- The function `calc_and_sum` returns the calculated value and sum.
- >-
Some examples of supported network drives are Network File System (NFS),
Server Message Block (SMB), and WebDAV.
- >-
ImageFolder is a dataset builder designed to quickly load an image
dataset with several thousand image files without requiring you to write
any code. It automatically loads any additional information about your
dataset, such as image resolution, format, or image tags, as long as you
include this information in a metadata file
(metadata.csv/metadata.jsonl).
- source_sentence: The `num_services` method gives the quantity of services in the garage.
sentences:
- >-
A signature in the sales database is a unique identifier for a
transaction that is updated every time a change is made. It is computed
by combining the previous signature and a hash of the latest update
applied.
- The `num_services` method returns the number of services in the garage.
- It returns the number of entries in the dataset.
model-index:
- name: SentenceTransformer based on srikarvar/fine_tuned_model_5
results:
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class dev
type: pair-class-dev
metrics:
- type: cosine_accuracy
value: 0.9821428571428571
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9922685623168945
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9909909909909909
name: Cosine F1
- type: cosine_f1_threshold
value: 0.9922685623168945
name: Cosine F1 Threshold
- type: cosine_precision
value: 1
name: Cosine Precision
- type: cosine_recall
value: 0.9821428571428571
name: Cosine Recall
- type: cosine_ap
value: 1
name: Cosine Ap
- type: dot_accuracy
value: 0.9821428571428571
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.9922685623168945
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9909909909909909
name: Dot F1
- type: dot_f1_threshold
value: 0.9922685623168945
name: Dot F1 Threshold
- type: dot_precision
value: 1
name: Dot Precision
- type: dot_recall
value: 0.9821428571428571
name: Dot Recall
- type: dot_ap
value: 1
name: Dot Ap
- type: manhattan_accuracy
value: 0.9821428571428571
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 1.8805665969848633
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9909909909909909
name: Manhattan F1
- type: manhattan_f1_threshold
value: 1.8805665969848633
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1
name: Manhattan Precision
- type: manhattan_recall
value: 0.9821428571428571
name: Manhattan Recall
- type: manhattan_ap
value: 1
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9821428571428571
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.12164457887411118
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9909909909909909
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.12164457887411118
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1
name: Euclidean Precision
- type: euclidean_recall
value: 0.9821428571428571
name: Euclidean Recall
- type: euclidean_ap
value: 1
name: Euclidean Ap
- type: max_accuracy
value: 0.9821428571428571
name: Max Accuracy
- type: max_accuracy_threshold
value: 1.8805665969848633
name: Max Accuracy Threshold
- type: max_f1
value: 0.9909909909909909
name: Max F1
- type: max_f1_threshold
value: 1.8805665969848633
name: Max F1 Threshold
- type: max_precision
value: 1
name: Max Precision
- type: max_recall
value: 0.9821428571428571
name: Max Recall
- type: max_ap
value: 1
name: Max Ap
- task:
type: binary-classification
name: Binary Classification
dataset:
name: pair class test
type: pair-class-test
metrics:
- type: cosine_accuracy
value: 0.9821428571428571
name: Cosine Accuracy
- type: cosine_accuracy_threshold
value: 0.9922685623168945
name: Cosine Accuracy Threshold
- type: cosine_f1
value: 0.9909909909909909
name: Cosine F1
- type: cosine_f1_threshold
value: 0.9922685623168945
name: Cosine F1 Threshold
- type: cosine_precision
value: 1
name: Cosine Precision
- type: cosine_recall
value: 0.9821428571428571
name: Cosine Recall
- type: cosine_ap
value: 1
name: Cosine Ap
- type: dot_accuracy
value: 0.9821428571428571
name: Dot Accuracy
- type: dot_accuracy_threshold
value: 0.9922685623168945
name: Dot Accuracy Threshold
- type: dot_f1
value: 0.9909909909909909
name: Dot F1
- type: dot_f1_threshold
value: 0.9922685623168945
name: Dot F1 Threshold
- type: dot_precision
value: 1
name: Dot Precision
- type: dot_recall
value: 0.9821428571428571
name: Dot Recall
- type: dot_ap
value: 1
name: Dot Ap
- type: manhattan_accuracy
value: 0.9821428571428571
name: Manhattan Accuracy
- type: manhattan_accuracy_threshold
value: 1.8805665969848633
name: Manhattan Accuracy Threshold
- type: manhattan_f1
value: 0.9909909909909909
name: Manhattan F1
- type: manhattan_f1_threshold
value: 1.8805665969848633
name: Manhattan F1 Threshold
- type: manhattan_precision
value: 1
name: Manhattan Precision
- type: manhattan_recall
value: 0.9821428571428571
name: Manhattan Recall
- type: manhattan_ap
value: 1
name: Manhattan Ap
- type: euclidean_accuracy
value: 0.9821428571428571
name: Euclidean Accuracy
- type: euclidean_accuracy_threshold
value: 0.12164457887411118
name: Euclidean Accuracy Threshold
- type: euclidean_f1
value: 0.9909909909909909
name: Euclidean F1
- type: euclidean_f1_threshold
value: 0.12164457887411118
name: Euclidean F1 Threshold
- type: euclidean_precision
value: 1
name: Euclidean Precision
- type: euclidean_recall
value: 0.9821428571428571
name: Euclidean Recall
- type: euclidean_ap
value: 1
name: Euclidean Ap
- type: max_accuracy
value: 0.9821428571428571
name: Max Accuracy
- type: max_accuracy_threshold
value: 1.8805665969848633
name: Max Accuracy Threshold
- type: max_f1
value: 0.9909909909909909
name: Max F1
- type: max_f1_threshold
value: 1.8805665969848633
name: Max F1 Threshold
- type: max_precision
value: 1
name: Max Precision
- type: max_recall
value: 0.9821428571428571
name: Max Recall
- type: max_ap
value: 1
name: Max Ap
SentenceTransformer based on srikarvar/fine_tuned_model_5
This is a sentence-transformers model finetuned from srikarvar/fine_tuned_model_5 on the json dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: srikarvar/fine_tuned_model_5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_12")
# Run inference
sentences = [
'The `num_services` method gives the quantity of services in the garage.',
'The `num_services` method returns the number of services in the garage.',
'It returns the number of entries in the dataset.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Binary Classification
- Dataset:
pair-class-dev
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9821 |
cosine_accuracy_threshold | 0.9923 |
cosine_f1 | 0.991 |
cosine_f1_threshold | 0.9923 |
cosine_precision | 1.0 |
cosine_recall | 0.9821 |
cosine_ap | 1.0 |
dot_accuracy | 0.9821 |
dot_accuracy_threshold | 0.9923 |
dot_f1 | 0.991 |
dot_f1_threshold | 0.9923 |
dot_precision | 1.0 |
dot_recall | 0.9821 |
dot_ap | 1.0 |
manhattan_accuracy | 0.9821 |
manhattan_accuracy_threshold | 1.8806 |
manhattan_f1 | 0.991 |
manhattan_f1_threshold | 1.8806 |
manhattan_precision | 1.0 |
manhattan_recall | 0.9821 |
manhattan_ap | 1.0 |
euclidean_accuracy | 0.9821 |
euclidean_accuracy_threshold | 0.1216 |
euclidean_f1 | 0.991 |
euclidean_f1_threshold | 0.1216 |
euclidean_precision | 1.0 |
euclidean_recall | 0.9821 |
euclidean_ap | 1.0 |
max_accuracy | 0.9821 |
max_accuracy_threshold | 1.8806 |
max_f1 | 0.991 |
max_f1_threshold | 1.8806 |
max_precision | 1.0 |
max_recall | 0.9821 |
max_ap | 1.0 |
Binary Classification
- Dataset:
pair-class-test
- Evaluated with
BinaryClassificationEvaluator
Metric | Value |
---|---|
cosine_accuracy | 0.9821 |
cosine_accuracy_threshold | 0.9923 |
cosine_f1 | 0.991 |
cosine_f1_threshold | 0.9923 |
cosine_precision | 1.0 |
cosine_recall | 0.9821 |
cosine_ap | 1.0 |
dot_accuracy | 0.9821 |
dot_accuracy_threshold | 0.9923 |
dot_f1 | 0.991 |
dot_f1_threshold | 0.9923 |
dot_precision | 1.0 |
dot_recall | 0.9821 |
dot_ap | 1.0 |
manhattan_accuracy | 0.9821 |
manhattan_accuracy_threshold | 1.8806 |
manhattan_f1 | 0.991 |
manhattan_f1_threshold | 1.8806 |
manhattan_precision | 1.0 |
manhattan_recall | 0.9821 |
manhattan_ap | 1.0 |
euclidean_accuracy | 0.9821 |
euclidean_accuracy_threshold | 0.1216 |
euclidean_f1 | 0.991 |
euclidean_f1_threshold | 0.1216 |
euclidean_precision | 1.0 |
euclidean_recall | 0.9821 |
euclidean_ap | 1.0 |
max_accuracy | 0.9821 |
max_accuracy_threshold | 1.8806 |
max_f1 | 0.991 |
max_f1_threshold | 1.8806 |
max_precision | 1.0 |
max_recall | 0.9821 |
max_ap | 1.0 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 560 training samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 560 samples:
label sentence2 sentence1 type int string string details - 1: 100.00%
- min: 9 tokens
- mean: 30.18 tokens
- max: 98 tokens
- min: 8 tokens
- mean: 30.0 tokens
- max: 98 tokens
- Samples:
label sentence2 sentence1 1
It is not available in v2.10.0.
No, it doesn't exist in v2.10.0.
1
You can become a member of the research forum and pose questions to the AI community.
You can join and ask questions in the AI research forum.
1
No information regarding initializing a project for PyTorch is included in the guide.
The guide does not provide information on how to initialize a project for PyTorch.
- Loss:
OnlineContrastiveLoss
Evaluation Dataset
json
- Dataset: json
- Size: 560 evaluation samples
- Columns:
label
,sentence2
, andsentence1
- Approximate statistics based on the first 560 samples:
label sentence2 sentence1 type int string string details - 1: 100.00%
- min: 15 tokens
- mean: 32.29 tokens
- max: 82 tokens
- min: 14 tokens
- mean: 31.96 tokens
- max: 82 tokens
- Samples:
label sentence2 sentence1 1
The how-to guides for the platform include instructions for Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Caching, Cloud storage, Indexing, Analytics, and Data Pipelines.
The how-to guides for the platform include Setup, Processing, Streaming, TensorFlow integration, PyTorch integration, Cache management, Cloud storage, Search index, Analytics, and Data Pipelines.
1
In the absence of a model script, all files in the supported formats will be loaded. However, if a model script is present, it will be downloaded and executed in order to download and prepare the model.
If there’s no model script, all the files in the supported formats are loaded. If there’s a model script, it is downloaded and executed to download and prepare the model.
1
React, Angular, and Vue are compatible with the Plugin library.
The Plugin library can be used with React, Angular, and Vue.
- Loss:
OnlineContrastiveLoss
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 32gradient_accumulation_steps
: 2num_train_epochs
: 4warmup_ratio
: 0.1load_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 2eval_accumulation_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss | pair-class-dev_max_ap | pair-class-test_max_ap |
---|---|---|---|---|---|
0 | 0 | - | - | 1.0 | - |
1.0 | 8 | - | 0.0028 | 1.0 | - |
1.25 | 10 | 0.1425 | - | - | - |
2.0 | 16 | - | 0.0003 | 1.0 | - |
2.5 | 20 | 0.002 | - | - | - |
3.0 | 24 | - | 0.0001 | 1.0 | - |
3.75 | 30 | 0.0008 | - | - | - |
4.0 | 32 | - | 0.0001 | 1.0 | 1.0 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.0
- Transformers: 4.41.2
- PyTorch: 2.1.2+cu121
- Accelerate: 0.34.2
- Datasets: 2.19.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}