fine_tuned_model_2 / README.md
srikarvar's picture
Add new SentenceTransformer model.
ef9ef29 verified
|
raw
history blame
27.6 kB
metadata
base_model: intfloat/multilingual-e5-small
datasets: []
language: []
library_name: sentence-transformers
metrics:
  - cosine_accuracy
  - cosine_accuracy_threshold
  - cosine_f1
  - cosine_f1_threshold
  - cosine_precision
  - cosine_recall
  - cosine_ap
  - dot_accuracy
  - dot_accuracy_threshold
  - dot_f1
  - dot_f1_threshold
  - dot_precision
  - dot_recall
  - dot_ap
  - manhattan_accuracy
  - manhattan_accuracy_threshold
  - manhattan_f1
  - manhattan_f1_threshold
  - manhattan_precision
  - manhattan_recall
  - manhattan_ap
  - euclidean_accuracy
  - euclidean_accuracy_threshold
  - euclidean_f1
  - euclidean_f1_threshold
  - euclidean_precision
  - euclidean_recall
  - euclidean_ap
  - max_accuracy
  - max_accuracy_threshold
  - max_f1
  - max_f1_threshold
  - max_precision
  - max_recall
  - max_ap
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1030
  - loss:ContrastiveLoss
widget:
  - source_sentence: First climber to reach the summit of Everest
    sentences:
      - How to create a podcast?
      - How to cook sushi rice?
      - Who was the first person to climb Mount Everest?
  - source_sentence: What methods are used to measure a nation's GDP?
    sentences:
      - How is the GDP of a country measured?
      - How do I sign out of my email account?
      - How does digital marketing differ from traditional marketing?
  - source_sentence: Steps to sign up for a new account
    sentences:
      - How to grow tomatoes in a garden?
      - What is the process for creating a new account?
      - What is the GDP of India?
  - source_sentence: Name of the tallest building in New York
    sentences:
      - What are the symptoms of anxiety?
      - What is the tallest building in New York?
      - Who was the first female Prime Minister of the UK?
  - source_sentence: How do you make a paper boat?
    sentences:
      - What are the benefits of using solar energy?
      - Where can I buy a new phone?
      - How do you make a paper airplane?
model-index:
  - name: SentenceTransformer based on intfloat/multilingual-e5-small
    results:
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class dev
          type: pair-class-dev
        metrics:
          - type: cosine_accuracy
            value: 0.9478260869565217
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.6633322238922119
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9558823529411764
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6633322238922119
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9154929577464789
            name: Cosine Precision
          - type: cosine_recall
            value: 1
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9777355464218691
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9478260869565217
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.6633322238922119
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9558823529411764
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.6633322238922119
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.9154929577464789
            name: Dot Precision
          - type: dot_recall
            value: 1
            name: Dot Recall
          - type: dot_ap
            value: 0.9777355464218691
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9391304347826087
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 9.603110313415527
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9489051094890512
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 12.660685539245605
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9027777777777778
            name: Manhattan Precision
          - type: manhattan_recall
            value: 1
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.975614621691024
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9478260869565217
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.8205450773239136
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9558823529411764
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.8205450773239136
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.9154929577464789
            name: Euclidean Precision
          - type: euclidean_recall
            value: 1
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9777355464218691
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9478260869565217
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 9.603110313415527
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9558823529411764
            name: Max F1
          - type: max_f1_threshold
            value: 12.660685539245605
            name: Max F1 Threshold
          - type: max_precision
            value: 0.9154929577464789
            name: Max Precision
          - type: max_recall
            value: 1
            name: Max Recall
          - type: max_ap
            value: 0.9777355464218691
            name: Max Ap
      - task:
          type: binary-classification
          name: Binary Classification
        dataset:
          name: pair class test
          type: pair-class-test
        metrics:
          - type: cosine_accuracy
            value: 0.9478260869565217
            name: Cosine Accuracy
          - type: cosine_accuracy_threshold
            value: 0.7873066663742065
            name: Cosine Accuracy Threshold
          - type: cosine_f1
            value: 0.9558823529411764
            name: Cosine F1
          - type: cosine_f1_threshold
            value: 0.6542514562606812
            name: Cosine F1 Threshold
          - type: cosine_precision
            value: 0.9154929577464789
            name: Cosine Precision
          - type: cosine_recall
            value: 1
            name: Cosine Recall
          - type: cosine_ap
            value: 0.9776721343444097
            name: Cosine Ap
          - type: dot_accuracy
            value: 0.9478260869565217
            name: Dot Accuracy
          - type: dot_accuracy_threshold
            value: 0.7873067259788513
            name: Dot Accuracy Threshold
          - type: dot_f1
            value: 0.9558823529411764
            name: Dot F1
          - type: dot_f1_threshold
            value: 0.6542515158653259
            name: Dot F1 Threshold
          - type: dot_precision
            value: 0.9154929577464789
            name: Dot Precision
          - type: dot_recall
            value: 1
            name: Dot Recall
          - type: dot_ap
            value: 0.9776721343444097
            name: Dot Ap
          - type: manhattan_accuracy
            value: 0.9478260869565217
            name: Manhattan Accuracy
          - type: manhattan_accuracy_threshold
            value: 11.123205184936523
            name: Manhattan Accuracy Threshold
          - type: manhattan_f1
            value: 0.9558823529411764
            name: Manhattan F1
          - type: manhattan_f1_threshold
            value: 12.862250328063965
            name: Manhattan F1 Threshold
          - type: manhattan_precision
            value: 0.9154929577464789
            name: Manhattan Precision
          - type: manhattan_recall
            value: 1
            name: Manhattan Recall
          - type: manhattan_ap
            value: 0.9774497925836063
            name: Manhattan Ap
          - type: euclidean_accuracy
            value: 0.9478260869565217
            name: Euclidean Accuracy
          - type: euclidean_accuracy_threshold
            value: 0.652188777923584
            name: Euclidean Accuracy Threshold
          - type: euclidean_f1
            value: 0.9558823529411764
            name: Euclidean F1
          - type: euclidean_f1_threshold
            value: 0.8315430879592896
            name: Euclidean F1 Threshold
          - type: euclidean_precision
            value: 0.9154929577464789
            name: Euclidean Precision
          - type: euclidean_recall
            value: 1
            name: Euclidean Recall
          - type: euclidean_ap
            value: 0.9776721343444097
            name: Euclidean Ap
          - type: max_accuracy
            value: 0.9478260869565217
            name: Max Accuracy
          - type: max_accuracy_threshold
            value: 11.123205184936523
            name: Max Accuracy Threshold
          - type: max_f1
            value: 0.9558823529411764
            name: Max F1
          - type: max_f1_threshold
            value: 12.862250328063965
            name: Max F1 Threshold
          - type: max_precision
            value: 0.9154929577464789
            name: Max Precision
          - type: max_recall
            value: 1
            name: Max Recall
          - type: max_ap
            value: 0.9776721343444097
            name: Max Ap

SentenceTransformer based on intfloat/multilingual-e5-small

This is a sentence-transformers model finetuned from intfloat/multilingual-e5-small. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: intfloat/multilingual-e5-small
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("srikarvar/fine_tuned_model_2")
# Run inference
sentences = [
    'How do you make a paper boat?',
    'How do you make a paper airplane?',
    'What are the benefits of using solar energy?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Evaluation

Metrics

Binary Classification

Metric Value
cosine_accuracy 0.9478
cosine_accuracy_threshold 0.6633
cosine_f1 0.9559
cosine_f1_threshold 0.6633
cosine_precision 0.9155
cosine_recall 1.0
cosine_ap 0.9777
dot_accuracy 0.9478
dot_accuracy_threshold 0.6633
dot_f1 0.9559
dot_f1_threshold 0.6633
dot_precision 0.9155
dot_recall 1.0
dot_ap 0.9777
manhattan_accuracy 0.9391
manhattan_accuracy_threshold 9.6031
manhattan_f1 0.9489
manhattan_f1_threshold 12.6607
manhattan_precision 0.9028
manhattan_recall 1.0
manhattan_ap 0.9756
euclidean_accuracy 0.9478
euclidean_accuracy_threshold 0.8205
euclidean_f1 0.9559
euclidean_f1_threshold 0.8205
euclidean_precision 0.9155
euclidean_recall 1.0
euclidean_ap 0.9777
max_accuracy 0.9478
max_accuracy_threshold 9.6031
max_f1 0.9559
max_f1_threshold 12.6607
max_precision 0.9155
max_recall 1.0
max_ap 0.9777

Binary Classification

Metric Value
cosine_accuracy 0.9478
cosine_accuracy_threshold 0.7873
cosine_f1 0.9559
cosine_f1_threshold 0.6543
cosine_precision 0.9155
cosine_recall 1.0
cosine_ap 0.9777
dot_accuracy 0.9478
dot_accuracy_threshold 0.7873
dot_f1 0.9559
dot_f1_threshold 0.6543
dot_precision 0.9155
dot_recall 1.0
dot_ap 0.9777
manhattan_accuracy 0.9478
manhattan_accuracy_threshold 11.1232
manhattan_f1 0.9559
manhattan_f1_threshold 12.8623
manhattan_precision 0.9155
manhattan_recall 1.0
manhattan_ap 0.9774
euclidean_accuracy 0.9478
euclidean_accuracy_threshold 0.6522
euclidean_f1 0.9559
euclidean_f1_threshold 0.8315
euclidean_precision 0.9155
euclidean_recall 1.0
euclidean_ap 0.9777
max_accuracy 0.9478
max_accuracy_threshold 11.1232
max_f1 0.9559
max_f1_threshold 12.8623
max_precision 0.9155
max_recall 1.0
max_ap 0.9777

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,030 training samples
  • Columns: label, sentence2, and sentence1
  • Approximate statistics based on the first 1000 samples:
    label sentence2 sentence1
    type int string string
    details
    • 0: ~49.60%
    • 1: ~50.40%
    • min: 4 tokens
    • mean: 10.27 tokens
    • max: 22 tokens
    • min: 6 tokens
    • mean: 10.9 tokens
    • max: 22 tokens
  • Samples:
    label sentence2 sentence1
    1 Speed of sound in air What is the speed of sound?
    1 World's most popular tourist destination What is the most visited tourist attraction in the world?
    1 How do I write a resume? How do I create a resume?
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.6,
        "size_average": true
    }
    

Evaluation Dataset

Unnamed Dataset

  • Size: 115 evaluation samples
  • Columns: label, sentence2, and sentence1
  • Approximate statistics based on the first 1000 samples:
    label sentence2 sentence1
    type int string string
    details
    • 0: ~43.48%
    • 1: ~56.52%
    • min: 5 tokens
    • mean: 10.04 tokens
    • max: 15 tokens
    • min: 6 tokens
    • mean: 10.81 tokens
    • max: 20 tokens
  • Samples:
    label sentence2 sentence1
    0 What methods are used to measure a nation's GDP? How is the GDP of a country measured?
    0 What is the currency of Japan? What is the currency of China?
    1 Steps to cultivate tomatoes at home How to grow tomatoes in a garden?
  • Loss: ContrastiveLoss with these parameters:
    {
        "distance_metric": "SiameseDistanceMetric.COSINE_DISTANCE",
        "margin": 0.6,
        "size_average": true
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • gradient_accumulation_steps: 2
  • weight_decay: 0.01
  • num_train_epochs: 8
  • lr_scheduler_type: reduce_lr_on_plateau
  • warmup_ratio: 0.1
  • load_best_model_at_end: True
  • optim: adamw_torch_fused
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 32
  • per_device_eval_batch_size: 32
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 2
  • eval_accumulation_steps: None
  • learning_rate: 5e-05
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 8
  • max_steps: -1
  • lr_scheduler_type: reduce_lr_on_plateau
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Epoch Step Training Loss loss pair-class-dev_max_ap pair-class-test_max_ap
0 0 - - 0.7625 -
0.6061 10 0.0417 - - -
0.9697 16 - 0.0119 0.9695 -
1.2121 20 0.0189 - - -
1.8182 30 0.0148 - - -
2.0 33 - 0.0102 0.9741 -
2.4242 40 0.0114 - - -
2.9697 49 - 0.0098 0.9752 -
3.0303 50 0.009 - - -
3.6364 60 0.008 - - -
4.0 66 - 0.0095 0.9778 -
4.2424 70 0.0065 - - -
4.8485 80 0.0056 - - -
4.9697 82 - 0.0092 0.9749 -
5.4545 90 0.0056 - - -
6.0 99 - 0.0088 0.9766 -
6.0606 100 0.0045 - - -
6.6667 110 0.0044 - - -
6.9697 115 - 0.0087 0.9777 -
7.2727 120 0.0038 - - -
7.7576 128 - 0.0090 0.9777 0.9777
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.0.1
  • Transformers: 4.41.2
  • PyTorch: 2.1.2+cu121
  • Accelerate: 0.32.1
  • Datasets: 2.19.1
  • Tokenizers: 0.19.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

ContrastiveLoss

@inproceedings{hadsell2006dimensionality,
    author={Hadsell, R. and Chopra, S. and LeCun, Y.},
    booktitle={2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)}, 
    title={Dimensionality Reduction by Learning an Invariant Mapping}, 
    year={2006},
    volume={2},
    number={},
    pages={1735-1742},
    doi={10.1109/CVPR.2006.100}
}