ssiyer's picture
Training complete
938a266 verified
|
raw
history blame
2.46 kB
metadata
license: apache-2.0
base_model: google/mt5-small
tags:
  - summarization
  - generated_from_trainer
datasets:
  - xsum
metrics:
  - rouge
model-index:
  - name: mt5-small-finetuned-amazon-en-es
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: xsum
          type: xsum
          config: default
          split: validation
          args: default
        metrics:
          - name: Rouge1
            type: rouge
            value: 0.0524

mt5-small-finetuned-amazon-en-es

This model is a fine-tuned version of google/mt5-small on the xsum dataset. It achieves the following results on the evaluation set:

  • Loss: 8.0085
  • Rouge1: 0.0524
  • Rouge2: 0.0083
  • Rougel: 0.0416
  • Rougelsum: 0.0416

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5.6e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
No log 1.0 4 12.7017 0.0208 0.0 0.0148 0.0148
No log 2.0 8 10.3879 0.0208 0.0 0.0148 0.0148
18.6837 3.0 12 9.1367 0.0208 0.0 0.0148 0.0148
18.6837 4.0 16 8.6067 0.0269 0.0 0.0209 0.0209
18.6837 5.0 20 8.2033 0.0377 0.0 0.026 0.0256
15.292 6.0 24 8.1000 0.0524 0.0083 0.0416 0.0416
15.292 7.0 28 8.0750 0.0524 0.0083 0.0416 0.0416
15.292 8.0 32 8.0085 0.0524 0.0083 0.0416 0.0416

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu118
  • Datasets 2.17.1
  • Tokenizers 0.15.2