|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import random |
|
import unittest |
|
|
|
import torch |
|
|
|
from diffusers import ( |
|
IFImg2ImgPipeline, |
|
IFImg2ImgSuperResolutionPipeline, |
|
IFInpaintingPipeline, |
|
IFInpaintingSuperResolutionPipeline, |
|
IFPipeline, |
|
IFSuperResolutionPipeline, |
|
) |
|
from diffusers.models.attention_processor import AttnAddedKVProcessor |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device |
|
|
|
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS |
|
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference |
|
from . import IFPipelineTesterMixin |
|
|
|
|
|
@skip_mps |
|
class IFPipelineFastTests(PipelineTesterMixin, IFPipelineTesterMixin, unittest.TestCase): |
|
pipeline_class = IFPipeline |
|
params = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} |
|
batch_params = TEXT_TO_IMAGE_BATCH_PARAMS |
|
required_optional_params = PipelineTesterMixin.required_optional_params - {"latents"} |
|
|
|
def get_dummy_components(self): |
|
return self._get_dummy_components() |
|
|
|
def get_dummy_inputs(self, device, seed=0): |
|
if str(device).startswith("mps"): |
|
generator = torch.manual_seed(seed) |
|
else: |
|
generator = torch.Generator(device=device).manual_seed(seed) |
|
|
|
inputs = { |
|
"prompt": "A painting of a squirrel eating a burger", |
|
"generator": generator, |
|
"num_inference_steps": 2, |
|
"output_type": "numpy", |
|
} |
|
|
|
return inputs |
|
|
|
def test_save_load_optional_components(self): |
|
self._test_save_load_optional_components() |
|
|
|
@unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA") |
|
def test_save_load_float16(self): |
|
|
|
super().test_save_load_float16(expected_max_diff=1e-1) |
|
|
|
def test_attention_slicing_forward_pass(self): |
|
self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) |
|
|
|
def test_save_load_local(self): |
|
self._test_save_load_local() |
|
|
|
def test_inference_batch_single_identical(self): |
|
self._test_inference_batch_single_identical( |
|
expected_max_diff=1e-2, |
|
) |
|
|
|
@unittest.skipIf( |
|
torch_device != "cuda" or not is_xformers_available(), |
|
reason="XFormers attention is only available with CUDA and `xformers` installed", |
|
) |
|
def test_xformers_attention_forwardGenerator_pass(self): |
|
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class IFPipelineSlowTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_all(self): |
|
|
|
|
|
pipe_1 = IFPipeline.from_pretrained("DeepFloyd/IF-I-XL-v1.0", variant="fp16", torch_dtype=torch.float16) |
|
|
|
pipe_2 = IFSuperResolutionPipeline.from_pretrained( |
|
"DeepFloyd/IF-II-L-v1.0", variant="fp16", torch_dtype=torch.float16, text_encoder=None, tokenizer=None |
|
) |
|
|
|
|
|
|
|
pipe_1.text_encoder.to("cuda") |
|
|
|
prompt_embeds, negative_prompt_embeds = pipe_1.encode_prompt("anime turtle", device="cuda") |
|
|
|
del pipe_1.tokenizer |
|
del pipe_1.text_encoder |
|
gc.collect() |
|
|
|
pipe_1.tokenizer = None |
|
pipe_1.text_encoder = None |
|
|
|
pipe_1.enable_model_cpu_offload() |
|
pipe_2.enable_model_cpu_offload() |
|
|
|
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
self._test_if(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) |
|
|
|
pipe_1.remove_all_hooks() |
|
pipe_2.remove_all_hooks() |
|
|
|
|
|
|
|
pipe_1 = IFImg2ImgPipeline(**pipe_1.components) |
|
pipe_2 = IFImg2ImgSuperResolutionPipeline(**pipe_2.components) |
|
|
|
pipe_1.enable_model_cpu_offload() |
|
pipe_2.enable_model_cpu_offload() |
|
|
|
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
self._test_if_img2img(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) |
|
|
|
pipe_1.remove_all_hooks() |
|
pipe_2.remove_all_hooks() |
|
|
|
|
|
|
|
pipe_1 = IFInpaintingPipeline(**pipe_1.components) |
|
pipe_2 = IFInpaintingSuperResolutionPipeline(**pipe_2.components) |
|
|
|
pipe_1.enable_model_cpu_offload() |
|
pipe_2.enable_model_cpu_offload() |
|
|
|
pipe_1.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
pipe_2.unet.set_attn_processor(AttnAddedKVProcessor()) |
|
|
|
self._test_if_inpainting(pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds) |
|
|
|
def _test_if(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): |
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe_1( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
num_inference_steps=2, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (64, 64, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 13 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) |
|
|
|
output = pipe_2( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
image=image, |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 4 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def _test_if_img2img(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): |
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
output = pipe_1( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
image=image, |
|
num_inference_steps=2, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (64, 64, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 10 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) |
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) |
|
|
|
output = pipe_2( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
image=image, |
|
original_image=original_image, |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 4 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
def _test_if_inpainting(self, pipe_1, pipe_2, prompt_embeds, negative_prompt_embeds): |
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) |
|
mask_image = floats_tensor((1, 3, 64, 64), rng=random.Random(1)).to(torch_device) |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
output = pipe_1( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
image=image, |
|
mask_image=mask_image, |
|
num_inference_steps=2, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (64, 64, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 10 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
|
|
|
|
_start_torch_memory_measurement() |
|
|
|
generator = torch.Generator(device="cpu").manual_seed(0) |
|
|
|
image = floats_tensor((1, 3, 64, 64), rng=random.Random(0)).to(torch_device) |
|
original_image = floats_tensor((1, 3, 256, 256), rng=random.Random(0)).to(torch_device) |
|
mask_image = floats_tensor((1, 3, 256, 256), rng=random.Random(1)).to(torch_device) |
|
|
|
output = pipe_2( |
|
prompt_embeds=prompt_embeds, |
|
negative_prompt_embeds=negative_prompt_embeds, |
|
image=image, |
|
mask_image=mask_image, |
|
original_image=original_image, |
|
generator=generator, |
|
num_inference_steps=2, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
|
|
mem_bytes = torch.cuda.max_memory_allocated() |
|
assert mem_bytes < 4 * 10**9 |
|
|
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy" |
|
) |
|
assert_mean_pixel_difference(image, expected_image) |
|
|
|
|
|
def _start_torch_memory_measurement(): |
|
torch.cuda.empty_cache() |
|
torch.cuda.reset_max_memory_allocated() |
|
torch.cuda.reset_peak_memory_stats() |
|
|