Edit model card

CNEC_1_1_ext_Czert-B-base-cased

This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2513
  • Precision: 0.8384
  • Recall: 0.8872
  • F1: 0.8621
  • Accuracy: 0.9570

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.3012 3.42 500 0.1677 0.8115 0.8626 0.8363 0.9518
0.1081 6.85 1000 0.1869 0.8218 0.8749 0.8475 0.9548
0.0654 10.27 1500 0.2132 0.8311 0.8813 0.8555 0.9559
0.0449 13.7 2000 0.2284 0.8296 0.8797 0.8540 0.9559
0.0341 17.12 2500 0.2353 0.8348 0.8856 0.8594 0.9575
0.0267 20.55 3000 0.2413 0.8397 0.8872 0.8628 0.9581
0.0227 23.97 3500 0.2513 0.8384 0.8872 0.8621 0.9570

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
6
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for stulcrad/CNEC_1_1_ext_Czert-B-base-cased

Finetuned
(7)
this model

Evaluation results