metadata
base_model: UWB-AIR/Czert-B-base-cased
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_1_1_ext_Czert-B-base-cased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8383838383838383
- name: Recall
type: recall
value: 0.8872260823089257
- name: F1
type: f1
value: 0.8621137366917683
- name: Accuracy
type: accuracy
value: 0.9569787813899163
CNEC_1_1_ext_Czert-B-base-cased
This model is a fine-tuned version of UWB-AIR/Czert-B-base-cased on the cnec dataset. It achieves the following results on the evaluation set:
- Loss: 0.2513
- Precision: 0.8384
- Recall: 0.8872
- F1: 0.8621
- Accuracy: 0.9570
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 25
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.3012 | 3.42 | 500 | 0.1677 | 0.8115 | 0.8626 | 0.8363 | 0.9518 |
0.1081 | 6.85 | 1000 | 0.1869 | 0.8218 | 0.8749 | 0.8475 | 0.9548 |
0.0654 | 10.27 | 1500 | 0.2132 | 0.8311 | 0.8813 | 0.8555 | 0.9559 |
0.0449 | 13.7 | 2000 | 0.2284 | 0.8296 | 0.8797 | 0.8540 | 0.9559 |
0.0341 | 17.12 | 2500 | 0.2353 | 0.8348 | 0.8856 | 0.8594 | 0.9575 |
0.0267 | 20.55 | 3000 | 0.2413 | 0.8397 | 0.8872 | 0.8628 | 0.9581 |
0.0227 | 23.97 | 3500 | 0.2513 | 0.8384 | 0.8872 | 0.8621 | 0.9570 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0