|
--- |
|
base_model: UWB-AIR/Czert-B-base-cased |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- cnec |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: CNEC_1_1_ext_Czert-B-base-cased |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: cnec |
|
type: cnec |
|
config: default |
|
split: validation |
|
args: default |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8383838383838383 |
|
- name: Recall |
|
type: recall |
|
value: 0.8872260823089257 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8621137366917683 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9569787813899163 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# CNEC_1_1_ext_Czert-B-base-cased |
|
|
|
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.2513 |
|
- Precision: 0.8384 |
|
- Recall: 0.8872 |
|
- F1: 0.8621 |
|
- Accuracy: 0.9570 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 32 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 25 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3012 | 3.42 | 500 | 0.1677 | 0.8115 | 0.8626 | 0.8363 | 0.9518 | |
|
| 0.1081 | 6.85 | 1000 | 0.1869 | 0.8218 | 0.8749 | 0.8475 | 0.9548 | |
|
| 0.0654 | 10.27 | 1500 | 0.2132 | 0.8311 | 0.8813 | 0.8555 | 0.9559 | |
|
| 0.0449 | 13.7 | 2000 | 0.2284 | 0.8296 | 0.8797 | 0.8540 | 0.9559 | |
|
| 0.0341 | 17.12 | 2500 | 0.2353 | 0.8348 | 0.8856 | 0.8594 | 0.9575 | |
|
| 0.0267 | 20.55 | 3000 | 0.2413 | 0.8397 | 0.8872 | 0.8628 | 0.9581 | |
|
| 0.0227 | 23.97 | 3500 | 0.2513 | 0.8384 | 0.8872 | 0.8621 | 0.9570 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.36.2 |
|
- Pytorch 2.1.2+cu121 |
|
- Datasets 2.16.1 |
|
- Tokenizers 0.15.0 |
|
|