stulcrad's picture
Model save
3e04bee verified
---
base_model: UWB-AIR/Czert-B-base-cased
tags:
- generated_from_trainer
datasets:
- cnec
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: CNEC_2_0_ext_Czert-B-base-cased
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: cnec
type: cnec
config: default
split: validation
args: default
metrics:
- name: Precision
type: precision
value: 0.8443598286530224
- name: Recall
type: recall
value: 0.8803970223325062
- name: F1
type: f1
value: 0.8620019436345967
- name: Accuracy
type: accuracy
value: 0.9639776213679841
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# CNEC_2_0_ext_Czert-B-base-cased
This model is a fine-tuned version of [UWB-AIR/Czert-B-base-cased](https://huggingface.co/UWB-AIR/Czert-B-base-cased) on the cnec dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1904
- Precision: 0.8444
- Recall: 0.8804
- F1: 0.8620
- Accuracy: 0.9640
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.3858 | 0.56 | 500 | 0.1756 | 0.7393 | 0.7742 | 0.7564 | 0.9477 |
| 0.1885 | 1.12 | 1000 | 0.1782 | 0.7596 | 0.8278 | 0.7922 | 0.9509 |
| 0.1474 | 1.68 | 1500 | 0.1539 | 0.7979 | 0.8427 | 0.8197 | 0.9579 |
| 0.1262 | 2.24 | 2000 | 0.1717 | 0.7965 | 0.8486 | 0.8217 | 0.9581 |
| 0.1092 | 2.8 | 2500 | 0.1512 | 0.7994 | 0.8625 | 0.8298 | 0.9604 |
| 0.0901 | 3.36 | 3000 | 0.1558 | 0.8204 | 0.8680 | 0.8435 | 0.9622 |
| 0.0882 | 3.92 | 3500 | 0.1557 | 0.8187 | 0.8541 | 0.8360 | 0.9611 |
| 0.0718 | 4.48 | 4000 | 0.1730 | 0.8134 | 0.8566 | 0.8344 | 0.9605 |
| 0.0704 | 5.04 | 4500 | 0.1726 | 0.8225 | 0.8715 | 0.8463 | 0.9623 |
| 0.0594 | 5.6 | 5000 | 0.1707 | 0.8318 | 0.8715 | 0.8512 | 0.9636 |
| 0.0567 | 6.16 | 5500 | 0.1781 | 0.8377 | 0.8710 | 0.8540 | 0.9629 |
| 0.0492 | 6.72 | 6000 | 0.1782 | 0.8410 | 0.8769 | 0.8586 | 0.9641 |
| 0.0437 | 7.28 | 6500 | 0.1883 | 0.8365 | 0.8734 | 0.8546 | 0.9625 |
| 0.0449 | 7.84 | 7000 | 0.1818 | 0.8439 | 0.8774 | 0.8603 | 0.9640 |
| 0.0421 | 8.4 | 7500 | 0.1927 | 0.8343 | 0.8720 | 0.8527 | 0.9632 |
| 0.0357 | 8.96 | 8000 | 0.1848 | 0.8463 | 0.8824 | 0.8639 | 0.9647 |
| 0.034 | 9.52 | 8500 | 0.1904 | 0.8444 | 0.8804 | 0.8620 | 0.9640 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0