TensorBlock

Feedback and support: TensorBlock's Twitter/X, Telegram Group and Discord server

kyujinpy/PlatYi-34B-Llama-Q - GGUF

This repo contains GGUF format model files for kyujinpy/PlatYi-34B-Llama-Q.

The files were quantized using machines provided by TensorBlock, and they are compatible with llama.cpp as of commit b4242.

Prompt template


Model file specification

Filename Quant type File Size Description
PlatYi-34B-Llama-Q-Q2_K.gguf Q2_K 12.825 GB smallest, significant quality loss - not recommended for most purposes
PlatYi-34B-Llama-Q-Q3_K_S.gguf Q3_K_S 14.960 GB very small, high quality loss
PlatYi-34B-Llama-Q-Q3_K_M.gguf Q3_K_M 16.655 GB very small, high quality loss
PlatYi-34B-Llama-Q-Q3_K_L.gguf Q3_K_L 18.139 GB small, substantial quality loss
PlatYi-34B-Llama-Q-Q4_0.gguf Q4_0 19.467 GB legacy; small, very high quality loss - prefer using Q3_K_M
PlatYi-34B-Llama-Q-Q4_K_S.gguf Q4_K_S 19.599 GB small, greater quality loss
PlatYi-34B-Llama-Q-Q4_K_M.gguf Q4_K_M 20.659 GB medium, balanced quality - recommended
PlatYi-34B-Llama-Q-Q5_0.gguf Q5_0 23.708 GB legacy; medium, balanced quality - prefer using Q4_K_M
PlatYi-34B-Llama-Q-Q5_K_S.gguf Q5_K_S 23.708 GB large, low quality loss - recommended
PlatYi-34B-Llama-Q-Q5_K_M.gguf Q5_K_M 24.322 GB large, very low quality loss - recommended
PlatYi-34B-Llama-Q-Q6_K.gguf Q6_K 28.214 GB very large, extremely low quality loss
PlatYi-34B-Llama-Q-Q8_0.gguf Q8_0 36.542 GB very large, extremely low quality loss - not recommended

Downloading instruction

Command line

Firstly, install Huggingface Client

pip install -U "huggingface_hub[cli]"

Then, downoad the individual model file the a local directory

huggingface-cli download tensorblock/PlatYi-34B-Llama-Q-GGUF --include "PlatYi-34B-Llama-Q-Q2_K.gguf" --local-dir MY_LOCAL_DIR

If you wanna download multiple model files with a pattern (e.g., *Q4_K*gguf), you can try:

huggingface-cli download tensorblock/PlatYi-34B-Llama-Q-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
Downloads last month
230
GGUF
Model size
34.4B params
Architecture
llama

2-bit

3-bit

4-bit

5-bit

6-bit

8-bit

Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for tensorblock/PlatYi-34B-Llama-Q-GGUF

Quantized
(3)
this model

Dataset used to train tensorblock/PlatYi-34B-Llama-Q-GGUF

Evaluation results