terrencewee12's picture
Upload README.md with huggingface_hub
e82c80b verified
metadata
language:
  - en
  - ms
  - zh
tags:
  - sentiment-analysis
  - text-classification
  - multilingual
license: apache-2.0
datasets:
  - tyqiangz/multilingual-sentiments
metrics:
  - accuracy
model-index:
  - name: xlm-roberta-base-sentiment-multilingual-finetuned
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          type: tyqiangz/multilingual-sentiments
          name: Multilingual Sentiments
        metrics:
          - type: accuracy
            value: 0.7528205128205128
Baseline Scores:
  Classification Report:
    Negative:
      Precision: 0.6153
      Recall: 0.8292
      F1-score: 0.7064
      Support: 1680
    Neutral:
      Precision: 0.5381
      Recall: 0.3035
      F1-score: 0.3881
      Support: 1443
    Positive:
      Precision: 0.7607
      Recall: 0.7803
      F1-score: 0.7704
      Support: 1752
  Metrics:
    Accuracy:
      Value: 0.656
      Support: 4875
    Macro Avg:
      Value: 0.638
      Support: 4875
    Weighted Avg:
      Value: 0.6447
      Support: 4875
Finetuned Scores:
  Classification Report:
    Negative:
      Precision: 0.7487
      Recall: 0.7875
      F1-score: 0.7676
      Support: 1680
    Neutral:
      Precision: 0.6775
      Recall: 0.6216
      F1-score: 0.6484
      Support: 1443
    Positive:
      Precision: 0.8128
      Recall: 0.8276
      F1-score: 0.8201
      Support: 1752
  Metrics:
    Accuracy:
      Value: 0.7528
      Support: 4875
    Macro Avg:
      Value: 0.7463
      Support: 4875
    Weighted Avg:
      Value: 0.7507
      Support: 4875

xlm-roberta-base-sentiment-multilingual-finetuned

Model description

This is a fine-tuned version of the cardiffnlp/twitter-xlm-roberta-base-sentiment-multilingual model, trained on the tyqiangz/multilingual-sentiments dataset. It's designed for multilingual sentiment analysis in English, Malay, and Chinese.

Intended uses & limitations

This model is intended for sentiment analysis tasks in English, Malay, and Chinese. It can classify text into three sentiment categories: positive, negative, and neutral.

Training and evaluation data

The model was trained and evaluated on the tyqiangz/multilingual-sentiments dataset, which includes data in English, Malay, and Chinese.

Training procedure

The model was fine-tuned using the Hugging Face Transformers library.

training_args = TrainingArguments( output_dir="./results", num_train_epochs=5, per_device_train_batch_size=16, per_device_eval_batch_size=64, warmup_steps=500, weight_decay=0.01, logging_dir='./logs', logging_steps=10, evaluation_strategy="epoch", save_strategy="epoch", load_best_model_at_end=True, )

Evaluation results

'eval_accuracy': 0.7528205128205128, 'eval_f1': 0.7511924805177581, 'eval_precision': 0.7506612130427309, 'eval_recall': 0.7528205128205128

Test Score :

Environmental impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).